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This paper first considers sequential quantum machines (SQMs). The SQMs that
possess an isometric transition operator and the SQMs that are factorizable or
strongly factorizable are characterized. Quantum Turing machines (QTMs) are
studied next and an alternative proof of the result that characterizes the unitary
evolution of a QTM is given. It is shown that any QTM can be represented in
terms of two quantum printerswhich are much simpler thanaQTM. Unidirectional
QTMs are studied and it is shown that their corresponding quantum printers are
closely related to each other. A simple method for constructing unidirectional
QTMs is given. Findly, a preliminary development of generalized QTMs and
guantum pushdown automata is presented.

1. INTRODUCTION

Thisarticleis acontinuation of ref. 2, where basic properties of quantum
automata were discussed. Although the present article is essentially self-
contained, we shall occasionally refer to ref. 2 for certain concepts and
notation. We now continue our exploration of the hierarchy of quantum
computers by moving from quantum automata to quantum machines that
have a more complex structure.

We begin in Section 2 with a review of some properties of isometric
and unitary operators that will be needed in the sequel. We point out that
unitarity is not always necessary for the reversible action of a quantum
computer and that an isometry is frequently sufficient. Section 3 considers
sequential quantum machines (SQMs). We first characterize those SQMss that
possess an isometric transition operator. We then characterize the SQMs that
are factorizable and strongly factorizable. Roughly speaking, a factorizable
SQM is one that can be decomposed into an internal part and an output part.
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Section 4 studies quantum Turing machines (QTMs). An aternative
proof of the result [1] that characterizes the unitary evolution of a QTM is
given. We review the concept of a quantum printer [2] and show that any
QTM has a natural connection with two quantum printers. The advantage of
this connection is that quantum printers are much simpler than QTMs. In
particular, the transition operator of a quantum printer can be written as a
finite product of quantum gates. We then characterize those pairs of quantum
printers that generate a QTM.

Unidirectiona QTMs are studied in Section 5. Their importance stems
from the fact that any QTM can be simulated by a unidirectional QTM with
slowdown by afactor of at most five [1]. We show that two quantum printers
that generate a unidirectional QTM are closely related and this again gives
a simplification. A simple method for constructing any unidirectional QTM
is presented and examples are given.

Finally, Section 6 discusses generalized QTMs and quantum pushdown
automata. Some of the results of Sections4 and 5 are carried over to general-
ized QTMs. A preliminary development of quantum pushdown automata is
given and isometric transition operators are characterized. For comprehensive
bibliographies on quantum computers, see refs. 1, 2, and 4.

2. ISOMETRIC AND UNITARY OPERATORS

This section reviews some properties of isometric and unitary operators
that will be needed in the sequel. In our work on quantum automata [2] all
the Hilbert spaces were finite dimensional, in which case there was no
difference between isometries and unitary operators. However, we must now
deal with infinite-dimensional Hilbert spaces and we have to distinguish
between these two types of operators.

If H; and H, are complex Hilbert spaces, a norm-preserving linear
transformation U: H; — H, is called an isometric transformation. Thus, U:
H, - H, satisfies [|Uy|| = || for al ¥ € H;. If H; = H, = H, wecal U
an isometry on H. It is easy to show that U is an isometry if and only if
U*U = 1, where U* isthe adjoint of U and 1 is the identity operator on H.
An isometry that also satisfies UU* = 1 is called a unitary operator. If dim
H < oo, then U*U = 1 implies that UU* = 1, so every isometry is unitary.
However, if dim H = <o, then there exist isometries that are not unitary. For
example, suppose H is a separable infinite-dimensiona Hilbert space with
orthonormal basis {s;, i € N. Define U{; = 5,1, and extend U to H by
linearity and closure. Then U is an isometry, but U is not unitary because
s, is not in the range of U. We denote the set of isometries on H by $(H)
and the set of unitary operators on H by AU(H). The following well-known
result will be needed in the sequel [1, 2].
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Theorem 2.1. Let Sbe an orthonormal basis for the Hilbert space H. (a)
A bounded linear operator U: H - H is an isometry if and only if (Us, Ut)
= 3¢ for every s, t € S (b) A linear, operator U: H - H is unitary if and
only if U isan isometry and ||[U*g| = 1 for every s e S

Noticethat $(H) is closed under multiplication because U, U, € $(H)
implies that

(UUx)* (U Uy) = UsUTU U, = UsU, =1
Moreover, if U € $(H), then
(U, Ud) = (U*UY, ) = (U, §)

so U preserves transition amplitudes (and norms), which is al that is needed
for quantum probability theory [3]. Thus, to describe quantum computers,
isometric evolutions are sufficient. Also, if U € $(H), then U is injective
because Uy = Ud implies that

b= UrUg = UrUb = &

Hence, U gives a reversible action, which is a requirement of quantum
mechanics. We now show that any isometry can be extended to a unitary
operator.

Theorem 2.2. If U e $(H), then the following statements hold:

(@ P = UU* is a projection operator and UH is the closed subspace
PH of H.

(b) U: H - UH is abijection and U™ = U*.

(c) If H is separable, then there exists a Hilbert space H; containing H
such that U has a unitary extension to H;.

Proof. (a) Since P = P* and
P2 = UU*UU* = UU* = P
P is a projection operator. To show that UH = PH, we have
Ul = UU*Uy = PU
Hence, Uy € PH and UH C PH. Also,
Py = UU*y = U(U*Y)

so that Py € UH and PH C UH.

(b) Since U*U = 1 and it follows from (@) that UU* = 1, we have
that U™t = U*.

(c) Let Hy be a separable, infinite-dimensiona Hilbert space and let
H; = H @ Ho. Now H is a closed subspace of H; and U is a bijective
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isometric transformation from H onto PH C H;. Since Hy and P*H © H,
are separable, infinite-dimensional Hilbert spaces, there exists a bijective
isometric transformation Ug: Hy — P*H & Hy. Then U, = U © Uq € U(H,)
and U; extends U. m

We denote the unit sphere of a Hilbert space H by H. The restriction
of an isometry to H is an injection and the restriction of a unitary operator
to H is a bijection.

3. SEQUENTIAL QUANTUM MACHINES

Let O be a finite alphabet with n letters and let Hy be a Hilbert space
of dimension n. We identify the letters of O with an orthonormal basis for
H,. Denoting the n-fold tensor product of Hy with itself by ®" Hy, let

K:C@Ho@®2Ho@@®nHo@

be the tensor algebra over Hy. (This corresponds to a full Fock space in
quantum field theory.) We identify 1 e C with the empty word X\, and writing
abasiselementy; @ - @ y,of ® Hp,yi € O, i =1,...,m asyyy, -+
Ym, We can view this basis element as aword in O* of length m. Thus, there
is a one-to-one correspondence between an orthonormal basis of K and the
words in O* and we identify corresponding elements.
A seguential quantum machine (SQM) is a 5-tuple I = (S s, |, O,
d), where Sis afinite set of internal states, s, € Sisthe start state, | and O
are finite input and output alphabets, and 5.1 X SX O X S5 Cisa
transition amplitude function that satisfies
> 8% s Y, )X S, Y ) = dse (3.1)
yeO,teS
forevery x e I, 5,8 € S In (3.1), the symbol asterisk denotes the complex
conjugation operation. We interpret d(x, s, vy, t) as the transition amplitude
that )¢ prints y and enters state t after scanning x in the current state s. Let
H be a complex Hilbert space whose dimension is the cardinality of S. We
identify Swith a fixed orthonormal basis for H and call S a computational
basisfor H [2]. Thetransition operator U: | — $(H ® K) isdefined by letting

UXS® Y -+ V1 = Et 3(X S Y, ) ® Yym Vs
Y.

and extending U(x) to H ® K by linearity and closure. More precisaly, U(x)
is first extended to the subspace spanned by the basis elements s ® vy, -
Vi,se Sy, e Oom=0,1,...,wherey, = 1 € C, by linearity. Since, as
weshall showinLemma3.1, JU(X)|| = 1, U(X) has aunique bounded extension
to H ® K. The next result shows that U(X) is indeed an isometry.
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Lemma 3.1. U(X) is an isometry if and only if & satisfies (3.1).
Proof. If U(X) € $(H & K), then

> 3%, s Y, 1) 8(x S, Y,

yit

=D DX SYDIXS,Y, )Ryt ®yY)

yt y,t

- <E 3% sy, M@y > 8Xxs,y, )t ® y’>
yit y,t

= (UXS® N, UXS ® \) = dsg

Conversely, suppose that & satisfies (3.1). As in the previous computation,
we have

UXs® z UXS ® Z) = dsy 3,7

fordls s € Sz Z e O*. An arbitrary element ¢ in the subspace spanned
by the basis elements can be represented by a finite sum of the form ¢ =
2ajs®z,5 € §z e O*. We then have

UG = <U(X) % ;§ ® 7, U(x) IEJ S, @ Zi’>

=> E aij of i{U(Xs ® 7, UXs @ z)

iy

= Jouj” = llblP
i

It follows that the unique bounded linear extension of U(X) to H ® K is
an isometry. m

Notice that U(X) is not unitary because \ is not in the range of U(X).
Also U(x) is local in the sense that

UX): H® (®Hg) - H® (®"H,)

In thisway, U(X) isakind of creation operator. We call the elements of (H &®
K)" configurations on )¢ and the vector ¢y = s @ \ is called the initial
configuration. We extend the definition of U to U: I* - $(H ® K) by
defining U(\) = 1 and U(w) = U(x) -+ U(xy) forany w = X =+ X, e I*.

The SQM )¢ operates as follows. Upon receiving a word w = X *+-
x; € I*, I scans the letter x; and enters the configuration U(x))dy € H®
Ho. An output letter v, is printed with probability
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Pu(yalx) = E KU(X) o, s ® yp)|?

After scanning the letter x,, )¢ enters the configuration
U(xx)do = U(x)U(X)do € H & (®%Hy)
An output word y,Y, is printed with probability
Pu YaYilXeXe) = 2 [(U(XeX2)bo, S @ Yay1)|?
S

Finally, after the entire input word w is scanned, an output word of length
k is printed and the probability that this word is yy --- y, becomes

Pue(Yic Vil -+ %) = g (UW)do, S® Yic -+ ypI?

As with g-automata [2], the probability of an output can be computed
in terms of a sum of amplitudes over computational paths. For example,

Pue( Ya2Y1/%eXq)
= 2 U)o, U()*s ® yoyn)|?

2

=2 12 (U)o, t @ YU B Y, S @ Yoy

s |ty
An SQM N = (S sy |, O, d) is factorizable if
3(X, s, ¥, 1) = B1(X, S, Y) 82X, S, 1)

for some functions 8,: | X SX O - Cand 8, 1 X SX S - C. It then
follows that

2 B2(%, 5, ¥) 8%, 8, Y)* X BaX, S 1) By(x, S, O)* = Bse
y t
forevery x e I, 5,8 € S We say that I is strongly factorizable if there
exist Ur: | - AU(H) and Up: | X S - $(K) such that
UX)s® z = Ut (X)s ® U(X, 5)z (3.2

forevery x e I, s € S z € O*. We call Ut the state operator and Ug the
output operator for .

Theorem 3.2. An SQM N is factorizable if and only if for every x e
I,se S andz e O* thereexist y € H and ¢ e K such that U(X)s ® z =

U ® .
Proof. If It is factorizable, then
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URS®z= 81X, S, Y) 8%, s, Nt @ yz
yit

= D 8% S DR D 84(x, S, Y)yz
t y

Letting s = = 3(X, s, )t and b = =, 8,(X, S, y)yz gives the result. Conversely,
suppose that UX)s® z = ¢ ® ¢ for some s € H, ¢ € K. Then
UX)s® N = (X, ) @ b(X, 9)
for some Yi(x, s) € H, d(x, s) € K. Since
UXS® N\ = Et 3(x, sy Yy
Ys
we have
30X S Y, ) = (UXSR N tRY) = U(X, 9 ® d(X 9, t®Y)

= (U(x, 9), (X, ), ¥)
Letting34(X, s, Y) = {((d(X, S), Yy and d,(x, s, t) = (Ui(X, 9), t) givestheresult. =

Theorem 3.3. An SQM ¢ is strongly factorizable if and only if ¢ is
factorizable and

2B syP=1 X8 shdhxs D=8y (33
y T

forevery x e I, 5,5 € S

Proof. Suppose It is factorizable and satisfies (3.3). For any x e |,
define Ur(X): H - H by

UT(X)S = E 82(X, S, t)t

and forany x € I, s € S, define Ug(x, S): K - K by letting
UO(X! S)Z = 2 81()(! S! Y)yz
y

and extending Ug(X, S) to K by linearity and closure. Then
<UT(X)S, UT(X)S’> = <2 82()(, S, t)t, 2 82()(, S’, t,)t,>
t t’
= > 8% 5, 1) 8%, 8, )*(t, 1)
tt’

= E 82()(1 S1 t) 82()(1 s,l t)* = 8S,S'
t

It follows from Theorem 2.1 that Ut: | — U(H). Moreover,
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(Uo(X, 9z, Uo(x, 9)Z') = <E 31(%, S, Y)Yz, E 31(X, S, y’)y’z’>
y y
= 2 81()(1 S, y) 8l(Xv S, y')*<y2, y,Z,>
Yy

= E |81(X1 S, y)‘z 8z,z’ = 8z,z’
y

Again, by Theorem 2.1, Ug: | X S $(K).Forx e I,s e S z e Q* wehave
UXs®z=> 38X s Yy hyz
yit

=3 81(x 5 Y) 8x(% S Dt R yz
yt

=Y 8% S D@ D 31(% S, Y)Yz
t y

= Ur(X)s ® Ug(X, 9)z

so I is strongly factorizable.

Conversely, suppose that It is strongly factorizable. Then there exist
maps Ut: | - AUH), Up: | X S - $(K) such that (3.2) holds. Define 3,:
I X SX O - Chy

31(X, s, y) = (Uo(X, I\, ¥)
and 8, 1 X SX S - Chy
5(X s, 1) = (Ur(¥)s, 1)
We then have
3%, S, ¥, 1) = (UXs® N\ tRY)
= (U1(X)s & Up(x, I\, t R )
= (Ur(¥)s, t)(Uo(X, SN, ¥)
= 3:1(% S, Y) 3% S, 1)
and we conclude that ) is factorizable. Since
Ur(¥)s ® Ug(x, N = U(X)S® \ = 2 Sa(%, S LR D 81(X, S, Y)Y
y

we have Ug(X, I\ = 2y 84(X, S, Y)y. Hence,
2 8%, s, y)[* = IUo(x, NP = 1
y

Moreover, Ut(X)s = Z; 3,(X, S, t)t, so we have
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E 6Z(X! S, t) 62()(1 Sr! t)* = (UT(X)S’ UT(X)S,> = 83,5’

Hence, (3.3) holds. m

If ¢ is strongly factorizable, then (S s, |, 8,) is a quantum automaton
[2, 4]. We extend Ug to Ug: (I X 9* — $(K) by defining Ug(\) = 1 and
Uo((X: §) -+ (%1, s1)) = Uo(X, §) *+* Uo(Xs, S1)
Theorem 3.4. If 2t is strongly factorizable, then

U(Xk o Xl)(bo = 2 <UT(X1)801 S]_><UT(X2)S]_! 32>

X (Ur (K- 1S o Sic Ut (XS4
@ Uo((Xcr Si-e) =+ (%12 SN
Proof. We have that
U - X))o = U(Xd =+ U(X1)So @ N
= U(X) - U()[Ur(X)S0 @ Uo(X1, SoA]
= U(X) - U(xo) % (Ur (XS0, SpS; ® Uo(Xg, So)A

= U0 -+ U(xg) X (Ur(xa)so, SUG)[S, © Uo(xa, So)A]

= U(x) -+ U(xg) 2 (Ur(X)so, SpUT(X%0)s,

i1

® UO((XZ! Sil)(xl, SO)))\

Continuing this process, we obtain the result. m

Two SQMs ¢ and ¢’ with the same input and output alphabets are
equivalent if py,(ulv) = py:'(uv) for every u e O*, v e I* of the same length.
Simple examples show that not every SQM is equivalent to afactorizable one.
We close this section with an open problem.

Problem 1. Let ¢ and ' be SQMs with n and n’ states, respectively
and the same input and output alphabets. Is it true that ¢ and I’ are
equivalent if and only if py(u[v) = py(ulv) for all words u, v of length n +
n’ — 1? (This holds for stochastic sequential machines [5].)

4. QUANTUM TURING MACHINES

A quantum machine (QM) isatripleM = (I, S 3), where | is afinite
aphabet with an identified blank symbol #, Sis a finite set of states with
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identified start state sy and final state s, and 8: 1| X SX | X SX {L, R} -
C is atransition amplitude function. The QM has a two-way infinite tape of
cells indexed by the integers Z and a single read—write head that moves one
cell at atime aong the tape. A configuration or instantaneous description
of M is a complete description of the contents of the tape, the location of
the tape head, and the state s e S of the finite control. At any time only a
finite number of tape cells can contain nonblank letters. In theinitial configu-
ration of M the tape head is at cell O, called the start cell, and M is in the
state . An initia configuration has input w e (I\#)*, where w is written
on the tape cells O, 1, 2, ..., m and all other tape cells are blank. The
machine M halts for input w if M eventually enters the fina state s. We
interpret 3(x, s, ¥, t,d), x, y e I, st € S d e {L, R}, as the transition
amplitude that M prints y, enters state t, and moves its tape head l€eft or right
when its current letter on the tape head is x and its current state is s.

Let H be the Hilbert space with computational basis B indexed by the
configurations of M. An element s € B hastheform ¢y = n ® s® w, where
n e Z isthe address of the tape cell at the tape head, s € Sis the current
state, and w is the word printed on the tape. We assume that w has each of
its letters indexed by the address of the cell that the letter occupies and wy,, €
| is the letter in the mth cell. The evolution operator for M is the linear
operator U: H - H that satisfies

Un®@s®@w= > 8W,, s ¥t dnd) @t w(y, n) (4.1)
y.t,d

wheren(L) = n—-1,n(R) =n+ 1, and

if m=n
W(Y, M = {\)//vm if m#n

A QM M is a quantum Turing machine (QTM) if U e U(H). It is
shown in ref. 1 that if U € $(H), then U € AU(H). Their proof relies on a
detailed analysis of the operation of M and a study of the “infinite matrix”
U. We shall give an aternative proof that is straightforward and algebraic.
For d € {L, R} we define

g_[b if d=R
IR if d=L

Lemma 4.1. The adjoint of U satisfies
Usn®@t®@w= > 3(x s, Wi, t, d')*n(d) &® s &® w(x, n(d)) (4.2)
x,s,d

Proof. Forany ' ® s ® w' e B we have
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Un@s®@w,n Qs Qw)
= <2 d(Wn, sy, t,d)n(d) @t@wW(y, n),n @s & w’>
y.t,d

= Ed 3(Wn, S, ¥ t, d)(n(d), n')t, s Xw(y, n), w')
yit,

= 8(Wn’ SY s, d) 8n’,n(d) 8W’,w(y,n) (4-3)
On the other hand, the operator in (4.2) actingon n’ ® s ® w' gives

<n ®SsOW, Y, (X t, Wy, S, d)*n'(d) ® t @ w(x, n’(d))>
x,t,d

= Zd 3(X, t, Wy, S, d')(n, n'(d)Xs, t}{w, w'(x, n'(d)))

=3(X s, Wr’f(d). s, d) 8n,n'(d) BW,W’(x,n’(d)) (4.4)

If the right side of (4.3) is nonzero, then it equals d(w,, s, Y, s, d), where
n" = n(d), w = w(y, n). If the right side of (4.4) is nonzero, then it equals
3(X, S, Wy (e, S', €), where n = n’(e) and

w = w(x n'(e) = w'(x, n)
Now n" = n(d) = n’(e)(d) implies that e = d'. Also,
er1’(e) =W, =Y

and x = w,. Hence, the right side of (4.4) isadso 8(w,, s, ¥, S, d). Similar
reasoning show that if (4.3) or (4.4) vanishes, then so does the other. =

Theorem 4.2. For aQM M = (I, S 9) the following statements are
equivalent. (&) M isa QTM. (b) U € $(H). (c) 8 satisfies

>3 s Yt d)d(X, s, Yt d)f =8,y dss (4.5)
yt,d
> 8% syt R3X,s,y,t,L)* =0 (4.6)
t

Proof. That (a) implies (b) istrivial. To show that (b) implies (c), suppose

that U € $(H). Assume that wy, = w,,, for m # n, w, = x, and w;, = x'. We
then have

dyx 9y = (UN®s®w,Un® s ®w)

- <2 3(x S Y. t, A)n(d) @ t @ w(y, 1),
y.t,d
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> (X, s,y,t,enE dt Qw(y, n)>
y'.t'e

=> > 3xsytddx,s,y,t,e*
ytdy.te

X (n(d), n(e)Xt, t')}w(y, n), w'(y’, n))

=2 > 3XsYtd)dX,s, Y, t,e* dgediy dyy
ytdy.,te

=Y 3% sVYtddXx,s,yt d)*
y,t,d

so (4.5) holds. Assume that wy, = w,form # n, m # n + 2, w, = X,
Woio = Y, Wy =Y, and w),, = X'. We then have

0=Un®s®w,Un+2)®s Qw)

= <2 3(x, s, 2 t, d)n(d) @ t ® w(z, n),
ztd

> 3(x,s,Z,t,e9n+ 2Dt QwW(Z,n+ 2)>
Zt'e

= > 8(xsztd)dX,s,Z,t, e

ztd Z t'\e
X An(d), (n + 2)(e))t, t'YwW(z, n), W (Z, n + 2))
= > 38xsztRJX,s,Z,t L)*wzn),w(,n+ 2)

27t
But (w(z, n), w'(Z,n+ 2)) =0unlessz=w,=yand Z = w,.» =V, in
which case (W(z, n), w'(Z/, n + 2)) = 1. Hence, (4.6) holds.

To show that (c) implies (a), suppose that (4.5) and (4.6) hold. It follows
from our calculations in the previous paragraph that ||Uds| = |[y| for every
¢ e B and that (Uy, Ud) = O for every s, b € B withy # ¢. Asin the
proof of Lemma 3.1, ||Uy|| = |[y|| for every ¥ in the subspace spanned by
the basis elements. Hence, the operator U satisfying (4.1) has a unique
extension to a bounded linear operator on H. We conclude that U € $(H).
By Theorem 2.1(b), if [|[U*{s|| = 1 for every s € B, thenU e U(H). Applying
Lemma 4.1, we have

[U*n @ t @ W2 = D) [3(X, S, Wi, t, d)|?
x,s,d

= > 18X, S, Wney, t, B2+ D) [3(X, S, Womy, t, L)[2 (4.7
X,S X,S
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We now show that for any y, y' € | we have

Jy =2 B syt RZ+ DBk sy, tL)2=1 (4.8)
X,S X,S

Letting Wnq) = Y, War = Y', it follows from (4.7) that
Jyy = U@ t@w| = U = U] = 1
Denoting the cardinality of Shy |, by (4.5) we have

Bl % Jyy = > Jyy

teSyy

-S| 3 besytRE S becs vt or]
A

x,s Lyy'.t
=“2[;BMSMLWZ+;B®SY1¢W]
=Y X PexsytdP=Y1=[F]s

X,s y,t,d X,S

Hence,
2 Yy = I[?
vy

and since J,,, = 1 we have J,,, = 1. It follows from (4.7) and (4.8) that
lU*¥]l = 1 for every s € B, so U € AU(H). Thus, MisaQTM. m

A QTM M operates as follows. The initial configuration has the form
o = 0® 5@ Wy € B, where s is the start state and Wy is the input word.
After the ith time step, M is in the superposition configuration U'jsy € H.
The probability that M halts at time i becomes

> (Ui, n® 5 @ w2

Of course, there are only afinite number of nonzero termsin this summation.
The probability that the word w is printed on the tape at time i becomes

2 KU'o, N ® s @ w)|?

Again, there are only a finite number of nonzero terms in this summation.
As with a SQM, the action of U islocal on H.

In our previous study of quantum automata, we considered a quantum
computer called a quantum printer [2]. Let | and S be as for a QTM. A
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guantum printer isatriple P = (I, S 8) whered: | X SX I XS Cisa
transition amplitude function that satisfies

Et 3(X% S ¥ 1) (X, S, Y, 1) = dyx B¢
Y

The quantum printer P operates as follows. Suppose we have an infinite one-
way tape divided into cells numbered —1, 0, 1, 2, .. .. The printer P has a
tape head that begins at cell 0 and moves one cell to the right at each time
step. The original tape is blank in every cell so P begins in state s, with #
in every cell. At time O, P scans its current state 5, and the # in cell —1.
Then P prints letter y in cell 0 and enters state s with amplitude 8(#, s, V,
s) and moves its tape head to cell 1. Then P scans the printed letter, say vy,
in cell 0 and its current state, say s, prints letter z and enters state t with
amplitude d(y, s, z, t) and movesitstape head to cell 2. This process continues
until P enters its final state s and halts. Of course, P can also be interpreted
as moving to the left on a one-way left infinite tape.

As with a QTM, the action of P is most easily given in terms of its
associated evolution operator. We form a finite-dimensional complex Hilbert
space Hy with an orthonormal basis identified with the elements of | X S
Thus, | X Sisthe computational basis for Hy and we denote its elements by
Xx® s x e l,s e S We define the evolution operator Up: Hy —» Ho, by

Ux®s=> 3(Xs Y tly®t
yt
and it follows that Up € U(Hg). Since a quantum printer P is much more
limited than a QTM, the Hilbert space H, for P is finite dimensional and its
evolution operator Up is much simpler. In particular, Up can be represented

by a finite unitary matrix. Nevertheless, we shall show that there is a natural
connection between a QTM and quantum printers.

Lemma 4.3. 1f M = (I, S ) isaQTM and a, b € C with |a| = |b| =
1, then P = (I, S v) is a quantum printer for

vyX, sy, t) =ad(x, sy, t, L) +bd(x syt R
Proof. Applying (4.5) and (4.6), we have
2:, VX S, Y, hy(X, S,y )*
Y

= S [ad(X, s Y t, L) + bd(x, S, ¥, t, R)]
yt

X [a*d(x’, §', ¥, t, L)* + b*3(X', 5, ¥, t, R*]
=Y 3 sVtddXx,s,yt d)*

yitd
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+ab* > 3(x, syt L)dX,s,yt R*
yt

+ ba* > 8(x, s, ¥, t, R) (X, S,y t, L)*
yt

= Sx,x’ 833’
The result now follows. =

The next result can be proved using the fact that UU* = 1, but it is
easier to prove using Lemma 4.3.

Corallary 4.4. 1f M = (I, S 8) isa QTM, then

Ed S(Xy S, y, t1 d) 8(X1 sl y,, t,’ d)* = By,y’ al,t' (49)
3% syt L)dxsy,t,R* =0 (4.10)

foreveryy' e I, t' € S
Proof. Define o, B: 1 X SX 1 X S 5 C by
ax, sy, ) =3(Xs VytL+3Xs Vvt R (4.11)
B, s, y,t) =8(XsVytL —3XsVyt R (4.12)

By Lemma 4.3, a(x, s, Y, t) are the entries of a unitary matrix A, so AA* =
1. It follows that

Byvy, Strt, = Z OL(X, S’ y’ t) OL(X! S! y’! t,)*

X,S

= > 3% sy td)dXxsy,t, d*
x,s,d
+ D 8%, sy, t,d)d(x s Yy, t,d)* (4.13)
X,s,d
A similar observation for g leads to
dyy dr = 2 (X sy, t,d)d(x sy, t,d)*
xs,d

- D 3% s Yt d)dXxsy,t,d)>* (4.14)

x,s,d

Adding (4.13) and (4.14) gives (4.9). Hence,
> 3% sy tddxsy, t,d)* =0
X,s,d
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S0 that

Re 3(x, s ¥t L)dXx sy, t',R*=0
X, S

Now let
a'(X sy t)=38(XsytL +idXx syt R

By reasoning as before, we have

8)/:)/' 8t,t’ = Ed S(X, SRR d) B(X’ S, y,1 t, d)*
XS,
— i [E 3(x, syt L)dxsY,t, R*
X,

->3xsytLR¥XSsY,t, L)*]
X,S

Hence,

Im> 8(x syt L)dXsy,t',R*=0

so (4.10) holds. =

Corresponding to aQTM M = (I, S 8) we have two quantum printers
P=(,S a),Q= (I, S B), where a and B are defined asin (4.11), (4.12).
Since «, B give finite-dimensional unitary matrices A and B, applying results
inrefs. 1and 2, we can write A and B asfinite products of quantum gates. Since

B(X! S! y1 ty L) = %Q(X1 Si yl t) + %B(Xl S’ y’ t)

(4.15)
3(x, s ¥ t, R) =Za(x, sy, 1) —3B(X, S, ¥, 1)

it follows that 3(x, s, ¥, t, L) and 3(X, s, ¥, t, R) can be written in terms of a
finite number of quantum gates. In this sense, quantum gates can be employed
in constructing aQTM. If o, B satisfy (4.15), we say that the quantum printers
P=(,S a),Q=(,S B) generate the QTM M = (I, S, 8). Of course, we
have just shown that any QTM is generated by a pair of quantum printers.
The converse does not hold in the sense that an arbitrary pair of quantum
printers need not generate a QTM. The next result characterizes generating
pairs of quantum printers.

Lemma 4.5. A pair of quantum printers P = (I, S «), Q = (I, S B)
generate aQTM M = (I, S 9) if and only if
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Et: [OL(X, S Y, t) - B(X1 S Y, t)][OL(X,, s, y/’ t) + B(X,’ s, y/’ t)]* =0

(4.16)
forevery x, X', ¥,y €l,s5,8 € S

Proof. If P and Q generate M, then (4.16) followsfrom (4.6). Conversely,
suppose that (4.16) holds and 3 is given by (4.15). Then (4.6) followsimmedi-
ately. To show that (4.5) holds we have

> 8% s vt d)d(X, s,y t, d)*
y.t,d
= 3 Sl S %0+ By O, S %) + B, S,y O
#3310 %0~ 806 S . Ol S, %, — B¢, . O

1 ! ! * 1 ! 4 *

:_Ea(xisfylt)a(x’siylt) +_E B(X’Slyyt) B(X1Sly1t)
293 247

= 8x,x’ 833’ u

Let M = (I, S 8) be a QTM with evolution operator U. Even though
U* gives the reverse operation of M, we cannot consider U* as the evolution
operator of a QTM. Indeed, by (4.2), U*n @ t ® w depends on the letters
Wi to the left and right of the tape head instead of the letter w, at the tape
head. Thus, U* does not act like the evolution operator of a QTM. We may
then ask whether M’ = (I, S 8') is a QTM, where

(X sy t,d) =38yt Xxsd)

The answer in general is no. Although (4.9) shows that (4.5) holds for &',
(4.10) gives a weaker condition than (4.6), and (4.6) need not hold for &'.
We shall give an example to show this in the next section.

5. UNIDIRECTIONAL QUANTUM TURING MACHINES

For a QTM M = (I, S ) define the operators A_, Ag on the finite-
dimensiona Hilbert space Hy with computational basis | X S by

AX®s=D3(xsYytLy®t
yt

AX®@s=Y 3(Xs Yy tRy®t
yt
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It followsfrom (4.5) and (4.6) that A A¥ + AgA% = 1and AgAF = 0. More-
over, (4.9) and (4.10) give that A¥A, + ARAr = 1 and ARA, = 0. For a, b
e C with |a| = |b| = 1, define the operator A on Hy by A = aA, + bAg.
Then A is unitary because

AA* = (al, + bAR)(a*AF + b*A%)
= ALAE + ARAﬁ + ba*ARAf + ab*ALAﬁ =

This gives an alternative proof of Lemma 4.3. We say that M is commutative
|f ARAL = ALAR-

Lemma 5.1. Suppose aQTM M = (I, S d) is generated by the quantum
printers P and Q with evolution operators Up, Uq, respectively. Then M is
commutative if and only if Up Ug = Ug Up

Proof. Since Up = AL + Ag, Ug = A_ — Ag, we have the following
equivalent equations:

UpUq = UgUp
(AL + AR)(AL — Ar) = (AL — AR)(AL + AR)
A? — A AR + AgAL — AR = A? + Al Ar — ARAL — A%
ARAL = AAg ®
A QTM M = (I, S d) is unidirectional [1] if
3(x, sV, R 8(x,s,y,t,L)* =0 (5.1

for al values of the arguments. Notice that (5.1) is a strengthening of (4.6).
Equation (5.1) saysthat any state of M can be entered from only one direction.
Itisshown inref. 1 that any QTM can be simulated by a unidirectional QTM
with slowdown by afactor of at most five. For this reason one can frequently
assume without loss of generality that a QTM is unidirectional.

Lemma 5.2. Two quantum printersP = (I, S «), Q = (I, S B) generate
a unidirectiona QTM if and only if for every t € Seither a(x, s, ¥, t) =
B(x, sy, t)forevery X,y e I, s e Sora(x, s, ¥, t) = —B(X S,V t) for every
Xx,yel,seS

Proof. If P and Q generate a unidirectional QTM M = (I, S 3), then
(5.1) implies that

[a(x sy, ) — B sy Ol[a(X', s, Y, 1) + B, 8,y OI* =0 (5.2

for every vaue of the arguments. Fixt € S If thereexist X',y € I, 8 e
S such that the second factor in (5.2) is nonzero, then a(x, s, v, t) = B(X, S,



Quantum Computers 2169

y,t) forevery x, y e I, s € S If thereexist X, y € |, s € Ssuch that the
first factor in (5.2) is nonzero, then o(X’, s, ¥, t) = —B(X, ¢, ¥, t) for
every X',y e |, 8 € S Conversely, suppose the second statement of the
lemma holds. Then (4.16) holds, so by Lemma 4.5, P and Q generate a QTM
M = (I, S 8). Moreover, (5.1) clearly holds, so M is unidirectional. =

Let P = (I, S ), Q = (I, S B) be quantum printers with evolution
operators A, B, respectively, considered as unitary matrices on the Hilbert
space Hy with computational basis | X S. Suppose that P and Q generate a
unidirectional QTM M = (I, S 3). Applying Lemma5.2, wehaveS= § U
Sand S N S =, where

S ={teSax,sVyt)=pK)syt)fordlx,yel, se §
={teSdx syt R =0fordlx,yel,se S
SK={teSalxsyt)=-pBxsytforalx,yel,se S
={te SdxsytL) =0fordlx,yel,se§
Letting r(t) be the characteristic function of Sz, we have
AB(X S, ¥, 1) = ()0 3y B, (5.3)
Indeed,
A*B(X, S, Y, t) = Et Ax(x, sy, t)B(Y, t', y, )
it

= yEt aly', t', % 9*B(Y, t', v, 1) (5.4)

Since B is unitary, it follows from Lemma 5.2 that the right side of (5.4)
vanishes if x # yor s # t. If x = y and s = t, then the right of (5.4) is 1
or —1 depending on whethert € § ort e S, respectively. We conclude
that A*B is a diagona matrix with diagonal elements =1, where —1 appears
in precisely those entries for whicht € S. A simple example is a one-way
QTM in which Ag = 0 or A_ = 0. In the first case, A = B and A*B = 1,
and in the second case B = —A and A*B = —1.

In the general situation, letting D = A*B, we have that B = AD. Hence,

A =1A+ 1B =1A +1AD = AG1 + 1D)
Ar=1A — 1B = IA — IAD = AG1 - 1D)
Now P. = 1l + 1D and Pz = 3| — 1D are diagonal matrices with 0 or 1
entries. It is clear that P, and Py are the projections of Hy onto the subspaces
generated by | X § and | X Sy, respectively. We conclude that A, can be

written as a product of quantum gates and P, and Ay is the same product
of quantum gates and Pxg.

(5.5)
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Lemma 5.2 gives a simple method for constructing any unidirectional
QTM. Just take any unitary matrix A on the Hilbert space Hy with computa-
tional basis| X S Let S= § U S be apartition of Sand define A, = AP_
and Agr = AP, where P, and Py are the projections of H, onto the subspaces
generated by | X § and | X S, respectively. Then

3 sVt L) =AxQsyRt)
3% S Y 1L,R = (Ax®s y® 1)

and M = (I, S ) isaunidirectiona QTM.

For a simple example, let |I| = |§ = 2 and let
1 1 1 1
Al 1o -1 -1
“2|-v2 0o o0 )2
0o J2 -J/2 o0

For S= {t, t;}, let § = {t}, Ss = {t;}. Then P_ = diag(, 0, 1, 0), Pg =
diag(0, 1, O, 1), and

1 0 1 0
11 1 0 -1 0
0 0 -J2 0

[0 1 0 1

110 -1 0 1

0 J2 0 0

We mentioned earlier that in contrast to (4.6), the equation
Y% sy tRX,sy, t,L)* =0
S

need not hold for a QTM. The present example illustrates this fact. Indeed,
we have

8()(21 tZr le t2! R) 8(X:I_l t21 le tlv L)*
+ 3(Xa ty, Xg, B, R) 8(Xy, ty, Xy, tg, L)*

_ 11,1,

2 2 2
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We now apply Lemma 4.5 to obtain a simple example of a nonunidirec-
tional QTM. Let I, S, and A be as in the previous example and let

1 1 1 1
1] -1 1 1 -1
B=3lo0 -2 2 o0
2 0 0 -

To show that A and B are evolution operators for quantum printers that
generate a QTM, we must verify (4.16). Notice that B(X, S, ¥, t1) = a(X, S,
y, t) and B(X, S, ¥, 1) =a(X S, Y, t1). Hence,

[a(X S Y, t) — B(X S Y, t)] [a(X, S, Y, ) + B(X, S, Y, t)]*
+ [a(x s, ¥ t) = B(X S Y )]

[a(X, S, Y, ) + B(X, S, Y, t)]*
= [a(X s Y, t) — a(X, S, Y, )]

[a(X, 8, Y, ) + a(X, S, Y, t)]*
+ [aX S, Y, t) — a(X, S, Y, ty)]

[a(X', S, Y, t) + a(X, s, Y, t)]* =0

In this case

AB ==

NI
(oNeh o)
O OO
= O OO
OrFr OO

so by the discussion following Lemmab5.2, the generated QTM isnot unidirec-
tional. To compute 3, we have

! 1 1 1
L1, 1. 1] 0O 0 0 0
S L L) [ TN TN R TN SR TN

| v/2 u/2 -u/2 -u)2

) 0 0 0
1 1. 1] 1 -1 -1 1
Ar=3A-5B=3|_u2 vz -U2 U2

| -v/2 v/2 -u/2 u/2




2172 Gudder

6. GENERALIZED QTMs AND QUANTUM PUSHDOWN
AUTOMATA

This section briefly discusses two generalizations of quantum computers
considered previously. Our investigations of these are preliminary and a
complete analysis will require further development.

A generalized QTM isthe same as a QTM except that the tape can stay
in the same position as well as move to the left or right. In this case

3 IXSXIXSX{L,NR - C

where N indicates no movement of the tape head. It is shown in ref. 1 that
unlike ordinary Turing machines, a generalized QTM is more powerful than
aQTM. The Hilbert space H and the computational basis B for a generalized
QTM M = (I, S 8) are the same as they were for a QTM. The evolution
operator U: H - H for M satisfies

Un®s®@w= > §(x sVt dnd) @t w(y, n)
y.t,d

whered e {L,N,R},n(L) =n—1,n(N) =n,n(R) = n + 1. Itiseasy to
check that the adjoint U* of U satisfies (4.2) except now d {L, N, R} and

L if d=R
d=<N if d=N
R if d=1L

The generalized counterpart of Theorem 4.2 holds except that in addition to
Condition 4.5 with d e {L, N, R} and Condition 4.6, we need

Et: [3(x, sy, t, N)d(X', s, y,t,L)* +3(x s V¥, t, R &X', S, ¥, t, N)*]
=0 (6.2)

forevery x, y, X',y €l, 5,8 € S
To show that (6.1) is necessary, suppose U € $(H), wy, = w,, for m #
nm#n+ 21 w, =X Wor1 = Y W, =Y, W, = X'. We then have

0={Un®s®w,Unh+1) Qs Qw)
=(D 3(x szt dnd) ®t X w(z n),
zt,d
2 3,8, Z,t,en+ 1E @t w(Z,n+ 1))

= > 3% 8 zt,d)d(X, s, Z,t e*

ztd Z t',e
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X An(d), (n + 1)(e))Xt, t'X¥wW(z, n), W (Z, n + 1))
= > 3 szt N)X, s, Z,t L)*wz n), w(,n+ 1)

27t

+ > 3% szt RIX, S, Z,t N)*wz n),w(,n+ 1)
27t

But (w(z, n), w'(Z,n+ 1)) =0unlessz=w,=yand Z = w,.1 = VY, in
which case (W(z, n), w'(Z, n + 1)) = 1. Hence, (6.1) holds. The rest of the
proof of the generalized counterpart of Theorem 4.2 proceeds as in the proof
of Theorem 4.2.

For a generalized QTM M = (I, S 8), define the operators A_, Ag on
Ho as in Section 5 and define the operator Ay by

AX®s=D38XsYyt Nyt
yt

As before we have AgAf = 0 and
ALAY + ANAY + ARAE =1
In addition, by (6.1) we have
ANAF + AgAF =0

Lemma 6.1. Let M = (I, S 8) be ageneralized QTM and let a, b, ¢ €
C with |a] = |b| = |c| = 1,ca* = bc*. Then the operator A on H, defined by

A = aA, + bAg + cAy
is unitary.
Proof. Applying our previous observations, we have
AA* = (aA_ + bAg + cAy) (@*AF + b*AE + c*AR)
= ALAY + AgAE + AWAY + ab* A AE + ba* AgA}
+ ca* ANAF + bc* AgAF + ac* A AF +ch* AR =1 =

For a, b, ¢ e C satisfying the conditions of Lemma 6.1, it follows that
P=(l, S v) is aquantum printer for

vyX, sy, t) =adx s ytL) + bdx s Y tR) + cd(X s Y tN)

Lemma 6.2. If M = (I, S 8) is a generalized QTM, then there exist
three quantum printersP = (I, S @), Q = (I, S B), T = (I, S v) such that

3%, syt L)=+1—i)axsyt) +H1+i)B(X syt +3v(x s V1)
3% S YL, R =%(1+i)a(xsyt) ++AL—1)BX sy t) —3v(XS V1)
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3% sy, t,N) =2a(x, sy, t) —1B(x, S,y 1)

Proof. Define the operators A, B, C on Hg by
A=A + Ag+ Ay
B=A + Az — Ay
C=A — Az +iAy

It follows from Lemma 6.1 that A, B, C € AU(Hp). Solving these three
equations simultaneously, we obtain

AL=11-)A+1(1+iB+4iC
AR=2(1+i)A+%(1—-i)B+3C

LettingP = (I, S «),Q=(,SB), T= (I, S v) be the quantum printers
with evolution operators A, B, C, respectively, we obtain the result. m

If P, Q, T satisfy the conditions of Lemma 6.2, we say that P, Q, T
generate M. Then Lemma 6.2 says that any generalized QTM is generated
by three quantum printers. One can now continue the analysis of ageneralized
QTM asin Section 5, but we shall not pursue this here.

To better understand the concept of a quantum pushdown automaton,
we first review its classical version. A deterministic pushdown automaton
(DPDA) isa 4-tuple A = (S I, T, d), where Siis a finite set of interna
control states with an identified start state 55 € Sand an identified set S C
Sof fina states, | is afinite input alphabet, T is a finite stack aphabet, and

8 IX{NUTXS-SXT*

is a trangition function. The DPDA ¢ has access to a stack which is an
infinite memory that stores words in the alphabet T. The transition function
d alows o to scan the input |etter, the top stack letter, and its current control
state. It then updates the control state, pops the top letter off the stack, and
pushes a (possibly empty) word onto the top of the stack. If the word in the
stack is empty so thereits no top letter, we use A in 8. An element s X W' e
S X T* isaconfiguration of «. The start configuration for & has the form
S X Wp. After reading aword w e I*, o acceptsw if o isin aconfiguration
s X {\}, where s € S. The language accepted by « is the set of al words
that s accepts. For example, the Dyck language of properly nested words
of brackets.

%O O, OO0 (OO, -}
is accepted by aDPDA oA. Inthiscase, | = {(,)}, T = {x}, and & pushes
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x onto the stack when it scans a ( and pops an x off the stack when it scans
a). If o ever attempts to pop an x off an empty stack, then o enters a reject
configuration and stays there. A DPDQ does not lose any power if it is only
allowed to push a single letter or the empty word at a time. In this case, it
either pushes down a single new letter or pops off an old letter.

A quantum pushdown automaton (QPDA) isa4-tuple 4 = (S I, T, 9),
where S I, Tareasin a DPDA, but now 8 is atransition amplitude function

O IXSX{NUTXSXTu({pt -C

Then 8 has the natural interpretation and we require that 8 satisfies the
following conditions:

2 3%, sV, I, ) 3(X, S, v, I, t)* = §s¢ (6.2)
r

forevery v e {A\} UT wherer e Ste TU{p};
> 8(X, SV, 1, p)d(X S, V, 1, p* = (6.3)

forevery v, v e {\} U T, withv # v'; and
> S(X s Vrt)dxs,V,r,p*=0 (6.4)
-
foreveryt e Tve (A} UT,V e T.
Let H be the configuration Hilbert space with computational basis S X

T*. For x e |, define the transition operator U(x): H — H as follows. If
Se Su=u - u e T*\{\}, then

UXs®@u =2 3 s u,r, t)r @ u(t) (6.5)

where

_fut if teT
u(t)_{uk-'-uz if t=p

and when u = \, then U(X) is also defined by (6.5) with

ot if teT
“(t)_{x it t=p

Theorem 6.3. The operator U(X) € $(H) if and only if (6.2)—(6.4) hold.

Proof. Assume that U(X) € $(H). Lettingu = u, -+ u; v # \, we have
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dss = (U(MX)s® u, UK)S ® u)

<E 3(x, s, v, 1, hr @ u(t), Z 3, S, v, ', t)r ® u(t’)>

> 8% S Vv, 1) 3(X, S, V1, t)R(r, rUXut, ut’)
rteTr't'eT

+ 28X SV T, p) 8% S, V', P, r)U s Uy, Uy - Uy
rr’
=2 8% S VrLt)dX S, vr, t)*
rt
If u= A and hencev = \, we get the same result. Hence, (6.2) holds. Letting
U= U "WV, U =u - w,Vv,Vv e Twithv # V', we have
0=(U Xs®u, UX)s ® u’)
=>3(XsVrpdXxs,V,rp*
r
If u= AU =V e T, we get the same result, so (6.3) holds. Letting u =
Ug ** UV, U = Uy -+ upvtv', we have
0= (UXs® u, UxX)s' ®u’)
=D 83X S Vr,t)dx s, V, 1, p)*
r
If u=v = \, we get the same result, so (6.4) holds.

Conversely, assume that (6.2)—(6.4) hold. To prove that U(X) € $(H),
it is sufficient to show that

UMs® u, UKS ® U') = dsg dyu
That |U(X)s ® u]| = 1 follows from (6.2). If s # ', we have
UX)s® u, UX)s @ u’)
= > 3(s X ug, 1, 1) 8(x, &, ug, 1, t')*u(t), u'(t))

rtt

Theright side vanishes unless u(t) = u’(t’) for somet,t' e TU {p}. Ifu=
u’, then the right side vanishes by (6.2). The other cases are given by (6.3)
and (6.4). If s= s and u # u’, then we proceed in asimilar way. m

It can be shown that U(X) ¢ AU(H) in general. We leave a further study
of QPDAs, including the languages they accept, to a later paper.
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