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This paper first considers sequential quantum machines (SQMs). The SQMs that
possess an isometric transition operator and the SQMs that are factorizable or
strongly factorizable are characterized. Quantum Turing machines (QTMs) are
studied next and an alternative proof of the result that characterizes the unitary
evolution of a QTM is given. It is shown that any QTM can be represented in
terms of two quantum printers which are much simpler than a QTM. Unidirectional
QTMs are studied and it is shown that their corresponding quantum printers are
closely related to each other. A simple method for constructing unidirectional
QTMs is given. Finally, a preliminary development of generalized QTMs and
quantum pushdown automata is presented.

1. INTRODUCTION

This article is a continuation of ref. 2, where basic properties of quantum
automata were discussed. Although the present article is essentially self-
contained, we shall occasionally refer to ref. 2 for certain concepts and
notation. We now continue our exploration of the hierarchy of quantum
computers by moving from quantum automata to quantum machines that
have a more complex structure.

We begin in Section 2 with a review of some properties of isometric
and unitary operators that will be needed in the sequel. We point out that
unitarity is not always necessary for the reversible action of a quantum
computer and that an isometry is frequently sufficient. Section 3 considers
sequential quantum machines (SQMs). We first characterize those SQMs that
possess an isometric transition operator. We then characterize the SQMs that
are factorizable and strongly factorizable. Roughly speaking, a factorizable
SQM is one that can be decomposed into an internal part and an output part.
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Section 4 studies quantum Turing machines (QTMs). An alternative
proof of the result [1] that characterizes the unitary evolution of a QTM is
given. We review the concept of a quantum printer [2] and show that any
QTM has a natural connection with two quantum printers. The advantage of
this connection is that quantum printers are much simpler than QTMs. In
particular, the transition operator of a quantum printer can be written as a
finite product of quantum gates. We then characterize those pairs of quantum
printers that generate a QTM.

Unidirectional QTMs are studied in Section 5. Their importance stems
from the fact that any QTM can be simulated by a unidirectional QTM with
slowdown by a factor of at most five [1]. We show that two quantum printers
that generate a unidirectional QTM are closely related and this again gives
a simplification. A simple method for constructing any unidirectional QTM
is presented and examples are given.

Finally, Section 6 discusses generalized QTMs and quantum pushdown
automata. Some of the results of Sections 4 and 5 are carried over to general-
ized QTMs. A preliminary development of quantum pushdown automata is
given and isometric transition operators are characterized. For comprehensive
bibliographies on quantum computers, see refs. 1, 2, and 4.

2. ISOMETRIC AND UNITARY OPERATORS

This section reviews some properties of isometric and unitary operators
that will be needed in the sequel. In our work on quantum automata [2] all
the Hilbert spaces were finite dimensional, in which case there was no
difference between isometries and unitary operators. However, we must now
deal with infinite-dimensional Hilbert spaces and we have to distinguish
between these two types of operators.

If H1 and H2 are complex Hilbert spaces, a norm-preserving linear
transformation U: H1 → H2 is called an isometric transformation. Thus, U:
H1 → H2 satisfies |Uc| 5 |c| for all c P H1. If H1 5 H2 5 H, we call U
an isometry on H. It is easy to show that U is an isometry if and only if
U*U 5 1, where U* is the adjoint of U and 1 is the identity operator on H.
An isometry that also satisfies UU* 5 1 is called a unitary operator. If dim
H , `, then U*U 5 1 implies that UU* 5 1, so every isometry is unitary.
However, if dim H 5 `, then there exist isometries that are not unitary. For
example, suppose H is a separable infinite-dimensional Hilbert space with
orthonormal basis ci , i P N. Define Uci 5 ci11 and extend U to H by
linearity and closure. Then U is an isometry, but U is not unitary because
c1 is not in the range of U. We denote the set of isometries on H by ((H )
and the set of unitary operators on H by 8(H ). The following well-known
result will be needed in the sequel [1, 2].
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Theorem 2.1. Let S be an orthonormal basis for the Hilbert space H. (a)
A bounded linear operator U: H → H is an isometry if and only if ^Us, Ut&
5 ds,t for every s, t P S. (b) A linear, operator U: H →H is unitary if and
only if U is an isometry and |U*s| 5 1 for every s P S.

Notice that ((H ) is closed under multiplication because U1, U2 P ((H )
implies that

(U1U2)*(U1U2) 5 U*2 U*1 U1U2 5 U*2 U2 5 1

Moreover, if U P ((H ), then

^Uc, Uf & 5 ^U*Uc, f & 5 ^c, f &

so U preserves transition amplitudes (and norms), which is all that is needed
for quantum probability theory [3]. Thus, to describe quantum computers,
isometric evolutions are sufficient. Also, if U P ((H ), then U is injective
because Uc 5 Uf implies that

c 5 U*Uc 5 U*Uf 5 f

Hence, U gives a reversible action, which is a requirement of quantum
mechanics. We now show that any isometry can be extended to a unitary
operator.

Theorem 2.2. If U P ((H ), then the following statements hold:
(a) P 5 UU* is a projection operator and UH is the closed subspace

PH of H.
(b) U: H → UH is a bijection and U21 5 U*.
(c) If H is separable, then there exists a Hilbert space H1 containing H

such that U has a unitary extension to H1.

Proof. (a) Since P 5 P* and

P2 5 UU*UU* 5 UU* 5 P

P is a projection operator. To show that UH 5 PH, we have

Uc 5 UU*Uc 5 PUc

Hence, Uc P PH and UH # PH. Also,

Pc 5 UU*c 5 U(U*c)

so that Pc P UH and PH # UH.
(b) Since U*U 5 1 and it follows from (a) that UU* 5 1UH we have

that U21 5 U*.
(c) Let H0 be a separable, infinite-dimensional Hilbert space and let

H1 5 H % H0. Now H is a closed subspace of H1 and U is a bijective
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isometric transformation from H onto PH # H1. Since H0 and P'H % H0

are separable, infinite-dimensional Hilbert spaces, there exists a bijective
isometric transformation U0: H0 → P'H % H0. Then U1 5 U % U0 P 8(H1)
and U1 extends U. n

We denote the unit sphere of a Hilbert space H by Ĥ. The restriction
of an isometry to Ĥ is an injection and the restriction of a unitary operator
to Ĥ is a bijection.

3. SEQUENTIAL QUANTUM MACHINES

Let O be a finite alphabet with n letters and let H0 be a Hilbert space
of dimension n. We identify the letters of O with an orthonormal basis for
H0. Denoting the n-fold tensor product of H0 with itself by ^n H0, let

K 5 C % H0 % ^2 H0 % ??? % ^n H0 % ???

be the tensor algebra over H0. (This corresponds to a full Fock space in
quantum field theory.) We identify 1 P C with the empty word l, and writing
a basis element y1 ^ ??? ^ ym of ^m H0, yi P O, i 5 1, . . . , m, as y1y2 ???
ym , we can view this basis element as a word in O* of length m. Thus, there
is a one-to-one correspondence between an orthonormal basis of K and the
words in O* and we identify corresponding elements.

A sequential quantum machine (SQM) is a 5-tuple M 5 (S, s0, I, O,
d), where S is a finite set of internal states, s0 P S is the start state, I and O
are finite input and output alphabets, and d. I 3 S 3 O 3 S → C is a
transition amplitude function that satisfies

o
yPO,tPS

d(x, s, y, t) d(x, s8, y, t)* 5 ds,s8 (3.1)

for every x P I, s, s8 P S. In (3.1), the symbol asterisk denotes the complex
conjugation operation. We interpret d(x, s, y, t) as the transition amplitude
that M prints y and enters state t after scanning x in the current state s. Let
H be a complex Hilbert space whose dimension is the cardinality of S. We
identify S with a fixed orthonormal basis for H and call S a computational
basis for H [2]. The transition operator U: I → ((H ^ K ) is defined by letting

U(x)s ^ ym ??? y1 5 o
y,t

d(x, s, y, t)t ^ yym ??? y1

and extending U(x) to H ^ K by linearity and closure. More precisely, U(x)
is first extended to the subspace spanned by the basis elements s ^ ym ???
y1, s P S, yi P O, m 5 0, 1, . . . , where y0 5 1 P C, by linearity. Since, as
we shall show in Lemma 3.1, |U(x)| 5 1, U(x) has a unique bounded extension
to H ^ K. The next result shows that U(x) is indeed an isometry.
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Lemma 3.1. U(x) is an isometry if and only if d satisfies (3.1).

Proof. If U(x) P ((H ^ K ), then

o
y,t

d(x, s, y, t) d(x, s8, y, t)*

5 o
y,t

o
y8,t8

d(x, s, y, t) d(x, s8, y8, t8)*^t ^ y, t8 ^ y8&

5 Ko
y,t

d(x, s, y, t)t ^ y, o
y8,t8

d(x, s8, y8, t8)t8 ^ y8L
5 ^U(x)s ^ l, U(x)s8 ^ l& 5 ds,s8

Conversely, suppose that d satisfies (3.1). As in the previous computation,
we have

^U(x)s ^ z, U(x)s8 ^ z8& 5 ds,s8 dz,z8

for all s, s8 P S, z, z8 P O*. An arbitrary element f in the subspace spanned
by the basis elements can be represented by a finite sum of the form f 5
( ai,j si ^ zj , si P S, zj P O*. We then have

|U(x)f|2 5 KU(x) o
i,j

ai,jsi ^ zj , U(x) o
i8,j8

ai8, j8si8, ^ zj8L
5 o

i,j
o
i8,j8

ai,j a*i8, j8^U(x)si ^ zj , U(x)si8 ^ zj8&

5 o
i,j

.ai,j.2 5 |f|2

It follows that the unique bounded linear extension of U(x) to H ^ K is
an isometry. n

Notice that U(x) is not unitary because l is not in the range of U(x).
Also U(x) is local in the sense that

U(x): H ^ (^nH0) → H ^ (^n11H0)

In this way, U(x) is a kind of creation operator. We call the elements of (H ^
K )∧ configurations on M and the vector f0 5 s0 ^ l is called the initial
configuration. We extend the definition of U to U: I* → ((H ^ K ) by
defining U(l) 5 1 and U(w) 5 U(xk) ??? U(x1) for any w 5 xk ??? x1 P I*.

The SQM M operates as follows. Upon receiving a word w 5 xk ???
x1 P I*, M scans the letter x1 and enters the configuration U(x1)f0 P H ^
H0. An output letter y1 is printed with probability
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pM( y1.x1) 5 o
s

.^U(x1)f0, s ^ y1&.2

After scanning the letter x2, M enters the configuration

U(x2x1)f0 5 U(x2)U(x1)f0 P H ^ (^2H0)

An output word y2 y1 is printed with probability

pM( y2 y1.x2 x1) 5 o
s

.^U(x2 x1)f0, s ^ y2 y1&.2

Finally, after the entire input word w is scanned, an output word of length
k is printed and the probability that this word is yk ??? y1 becomes

pM( yk ??? y1.xk ??? x1) 5 o
s

.^U(w)f0, s ^ yk ??? y1&.2

As with q-automata [2], the probability of an output can be computed
in terms of a sum of amplitudes over computational paths. For example,

pM( y2 y1.x2x1)

5 o
s

.^U(x1)f0, U(x2)*s ^ y2 y1&.2

5 o
s

Zo
t,y

^U(x1)f0, t ^ y&^U(x2)t ^ y, s ^ y2 y1&Z2
An SQM M 5 (S, s0, I, O, d) is factorizable if

d(x, s, y, t) 5 d1(x, s, y) d2(x, s, t)

for some functions d1: I 3 S 3 O → C and d2: I 3 S 3 S → C. It then
follows that

o
y

d2(x, s, y) d1(x, s8, y)* o
t

d2(x, s, t) d2(x, s8, t)* 5 ds,s8

for every x P I, s, s8 P S. We say that M is strongly factorizable if there
exist UT : I → 8(H ) and UO: I 3 S → ((K ) such that

U(x)s ^ z 5 UT (x)s ^ UO(x, s)z (3.2)

for every x P I, s P S, z P O*. We call UT the state operator and UO the
output operator for M.

Theorem 3.2. An SQM M is factorizable if and only if for every x P
I, s P S, and z P O* there exist c P H and f P K such that U(x)s ^ z 5
c ^ f.

Proof. If M is factorizable, then
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U(x)s ^ z 5 o
y,t

d1(x, s, y) d2(x, s, t)t ^ yz

5 o
t

d2(x, s, t)t ^ o
y

d1(x, s, y)yz

Letting c 5 (t d(x, s, t)t and f 5 (y d1(x, s, y)yz gives the result. Conversely,
suppose that U(x)s ^ z 5 c ^ f for some c P H, f P K. Then

U(x)s ^ l 5 c(x, s) ^ f(x, s)

for some c(x, s) P H, f(x, s) P K. Since

U(x)s ^ l 5 o
y,t

d(x, s, y, t)t ^ y

we have

d(x, s, y, t) 5 ^U(x)s ^ l, t ^ y& 5 ^c(x, s) ^ f(x, s), t ^ y&

5 ^c(x, s), t&^f(x, s), y&

Letting d1(x, s, y) 5 ^(f(x, s), y& and d2(x, s, t) 5 ^c(x, s), t& gives the result. n

Theorem 3.3. An SQM M is strongly factorizable if and only if M is
factorizable and

o
y

.d1(x, s, y).2 5 1, o
t

d2(x, s, t) d2(x, s8, t)* 5 ds,s8 (3.3)

for every x P I, s, s8 P S.

Proof. Suppose M is factorizable and satisfies (3.3). For any x P I,
define UT (x): H → H by

UT (x)s 5 o
t

d2(x, s, t)t

and for any x P I, s P S, define UO(x, s): K → K by letting

UO(x, s)z 5 o
y

d1(x, s, y)yz

and extending UO(x, s) to K by linearity and closure. Then

^UT (x)s, UT (x)s8& 5 Ko
t

d2(x, s, t)t, o
t8

d2(x, s8, t8)t8L
5 o

t,t8
d2(x, s, t) d2(x, s8, t8)*^t, t8&

5 o
t

d2(x, s, t) d2(x, s8, t)* 5 ds,s8

It follows from Theorem 2.1 that UT : I → 8(H ). Moreover,
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^UO(x, s)z, UO(x, s)z8& 5 Ko
y

d1(x, s, y)yz, o
y8

d1(x, s, y8)y8z8L
5 o

y,y8

d1(x, s, y) d1(x, s, y8)*^yz, y8z8&

5 o
y

.d1(x, s, y).2 dz,z8 5 dz,z8

Again, by Theorem 2.1, UO: I 3 S → ((K ). For x P I, s P S, z P Q* we have

U(x)s ^ z 5 o
y,t

d(x, s, y, t)t ^ yz

5 o
y,t

d1(x, s, y) d2(x, s, t)t ^ yz

5 o
t

d2(x, s, t)t ^ o
y

d1(x, s, y)yz

5 UT (x)s ^ UO(x, s)z

so M is strongly factorizable.
Conversely, suppose that M is strongly factorizable. Then there exist

maps UT : I → 8(H ), UO: I 3 S → ((K ) such that (3.2) holds. Define d1:
I 3 S 3 O → C by

d1(x, s, y) 5 ^UO(x, s)l, y&

and d2: I 3 S 3 S → C by

d2(x, s, t) 5 ^UT (x)s, t&

We then have

d(x, s, y, t) 5 ^U(x)s ^ l, t ^ y&

5 ^UT (x)s ^ UO(x, s)l, t ^ y&

5 ^UT (x)s, t&^UO(x, s)l, y&

5 d1(x, s, y) d2(x, s, t)

and we conclude that M is factorizable. Since

UT (x)s ^ UO(x, s)l 5 U(x)s ^ l 5 o
t

d2(x, s, t)t ^ o
y

d1(x, s, y)y

we have UO(x, s)l 5 (y d1(x, s, y)y. Hence,

o
y

.d1(x, s, y).2 5 |UO(x, s)l|2 5 1

Moreover, UT (x)s 5 (t d2(x, s, t)t, so we have
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o
t

d2(x, s, t) d2(x, s8, t)* 5 ^UT (x)s, UT (x)s8& 5 ds,s8

Hence, (3.3) holds. n

If M is strongly factorizable, then (S, s0, I, d2) is a quantum automaton
[2, 4]. We extend UO to UO: (I 3 S)* → ((K ) by defining UO(l) 5 1 and

UO((xj , sj) ??? (x1, s1)) 5 UO(xj , sj) ??? UO(x1, s1)

Theorem 3.4. If M is strongly factorizable, then

U(xk ??? x1)f0 5 o
i1,...,ik21

^UT (x1)s0, si1&^UT (x2)si1, si2&

3 ??? ^UT (xk21)sik22, sik21&UT (xk)sik21

^ UO((xk , sik21) ??? (xI , s0))l

Proof. We have that

U(xk ??? x1)f0 5 U(xk) ??? U(x1)s0 ^ l

5 U(xk) ??? U(x2)[UT (x1)s0 ^ UO(x1, s0)l]

5 U(xk) ??? U(x2) o
i1

^UT (x1)s0, si1&si1 ^ UO(x1, s0)l

5 U(xk) ??? U(x3) o
i1

^UT (x1)s0, si1&U(x2)[si1 ^ UO(x1, s0)l]

5 U(xk) ??? U(x3) o
i1

^UT (x1)s0, si1&UT (x2)si1

^ UO((x2, si1)(x1, s0))l

Continuing this process, we obtain the result. n
Two SQMs M and M8 with the same input and output alphabets are

equivalent if pM(u.v) 5 pM 8(u.v) for every u P O*, v P I* of the same length.
Simple examples show that not every SQM is equivalent to a factorizable one.
We close this section with an open problem.

Problem 1. Let M and M8 be SQMs with n and n8 states, respectively
and the same input and output alphabets. Is it true that M and M8 are
equivalent if and only if pM(u.v) 5 pM8(u.v) for all words u, v of length n 1
n8 2 1? (This holds for stochastic sequential machines [5].)

4. QUANTUM TURING MACHINES

A quantum machine (QM) is a triple M 5 (I, S, d), where I is a finite
alphabet with an identified blank symbol #, S is a finite set of states with
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identified start state s0 and final state sf , and d: I 3 S 3 I 3 S 3 {L, R} →
C is a transition amplitude function. The QM has a two-way infinite tape of
cells indexed by the integers Z and a single read–write head that moves one
cell at a time along the tape. A configuration or instantaneous description
of M is a complete description of the contents of the tape, the location of
the tape head, and the state s P S of the finite control. At any time only a
finite number of tape cells can contain nonblank letters. In the initial configu-
ration of M the tape head is at cell 0, called the start cell, and M is in the
state s0. An initial configuration has input w P (I \#)*, where w is written
on the tape cells 0, 1, 2, . . . , m and all other tape cells are blank. The
machine M halts for input w if M eventually enters the final state sf. We
interpret d(x, s, y, t, d ), x, y P I, s, t P S, d P {L, R}, as the transition
amplitude that M prints y, enters state t, and moves its tape head left or right
when its current letter on the tape head is x and its current state is s.

Let H be the Hilbert space with computational basis B indexed by the
configurations of M. An element c P B has the form c 5 n ^ s ^ w, where
n P Z is the address of the tape cell at the tape head, s P S is the current
state, and w is the word printed on the tape. We assume that w has each of
its letters indexed by the address of the cell that the letter occupies and wm P
I is the letter in the mth cell. The evolution operator for M is the linear
operator U: H → H that satisfies

Un ^ s ^ w 5 o
y,t,d

d(wn , s, y, t, d )n(d ) ^ t ^ w( y, n) (4.1)

where n(L) 5 n 2 1, n(R) 5 n 1 1, and

w( y, n)m 5 Hy if m 5 n
wm if m Þ n

A QM M is a quantum Turing machine (QTM) if U P 8(H ). It is
shown in ref. 1 that if U P ((H ), then U P 8(H ). Their proof relies on a
detailed analysis of the operation of M and a study of the “infinite matrix”
U. We shall give an alternative proof that is straightforward and algebraic.
For d P {L, R} we define

d8 5 HL if d 5 R
R if d 5 L

Lemma 4.1. The adjoint of U satisfies

U*n ^ t ^ w 5 o
x,s,d

d(x, s, wn(d), t, d8)*n(d ) ^ s ^ w(x, n(d )) (4.2)

Proof. For any n8 ^ s8 ^ w8 P B we have
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^Un ^ s ^ w, n8 ^ s8 ^ w8&

5 Ko
y,t,d

d(wn , s, y, t, d )n(d ) ^ t ^ w( y, n), n8 ^ s8 ^ w8L
5 o

y,t,d
d(wn , s, y, t, d )^n(d ), n8&^t, s8&^w( y, n), w8&

5 d(wn , s, y, s8, d ) dn8,n(d) dw8,w(y,n) (4.3)

On the other hand, the operator in (4.2) acting on n8 ^ s8 ^ w8 gives

Kn ^ s ^ w, o
x,t,d

d(x, t, w8n8(d), s8, d8)*n8(d ) ^ t ^ w8(x, n8(d ))L
5 o

x,t,d
d(x, t, w8n8(d), s8, d8)^n, n8(d )&^s, t&^w, w8(x, n8(d ))&

5 d(x, s, w8n8(d), s8, d8) dn,n8(d) dw,w8(x,n8(d)) (4.4)

If the right side of (4.3) is nonzero, then it equals d(wn , s, y, s8, d ), where
n8 5 n(d ), w8 5 w( y, n). If the right side of (4.4) is nonzero, then it equals
d(x, s, w8n8(e), s8, e8), where n 5 n8(e) and

w 5 w8(x, n8(e)) 5 w8(x, n)

Now n8 5 n(d ) 5 n8(e)(d ) implies that e 5 d8. Also,

w8n8(e) 5 w8n 5 y

and x 5 wn. Hence, the right side of (4.4) is also d(wn , s, y, s8, d ). Similar
reasoning show that if (4.3) or (4.4) vanishes, then so does the other. n

Theorem 4.2. For a QM M 5 (I, S, d) the following statements are
equivalent. (a) M is a QTM. (b) U P ((H ). (c) d satisfies

o
y,t,d

d(x, s, y, t, d ) d(x8, s8, y, t, d )* 5 dx,x8 ds,s8 (4.5)

o
t

d(x, s, y, t, R) d(x8, s8, y8, t, L)* 5 0 (4.6)

Proof. That (a) implies (b) is trivial. To show that (b) implies (c), suppose
that U P ((H ). Assume that w8m 5 wm for m Þ n, wn 5 x, and w8n 5 x8. We
then have

dx,x8 ds,s8 5 ^Un ^ s ^ w, Un ^ s8 ^ w8&

5 Ko
y,t,d

d(x, s, y, t, d )n(d ) ^ t ^ w( y, n)8,
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o
y8,t8,e

d(x8, s8, y8, t8, e)n(e) ^ t8 ^ w8( y8, n)L
5 o

y,t,d
o

y8,t8,e
d(x, s, y, t, d ) d(x8, s8, y8, t8, e)*

3 ^n(d ), n(e)&^t, t8&^w( y, n), w8( y8, n)&

5 o
y,t,d

o
y8,t8,e

d(x, s, y, t, d ) d(x8, s8, y8, t8, e)* dd,e dt,t8 dy,y8

5 o
y,t,d

d(x, s, y, t, d ) d(x8, s8, y, t, d )*

so (4.5) holds. Assume that w8m 5 wm for m Þ n, m Þ n 1 2, wn 5 x,
wn12 5 y8, w8n 5 y, and w8n12 5 x8. We then have

0 5 ^Un ^ s ^ w, U(n 1 2) ^ s8 ^ w8&

5 Ko
z,t,d

d(x, s, z, t, d )n(d ) ^ t ^ w(z, n)8,

o
z8,t8,e

d(x8, s8, z8, t8, e)(n 1 2)(e) ^ t8 ^ w8(z8, n 1 2)L
5 o

z,t,d
o

z8,t8,e
d(x, s, z, t, d ) d(x8, s8, z8, t8, e)*

3 ^n(d ), (n 1 2)(e)&^t, t8&^w(z, n), w8(z8, n 1 2)&

5 o
z,z8,t

d(x, s, z, t, R) d(x8, s8, z8, t, L)*^w(z, n), w8(z8, n 1 2)&

But ^w(z, n), w8(z8, n 1 2)& 5 0 unless z 5 w8n 5 y and z8 5 wn12 5 y8, in
which case ^w(z, n), w8(z8, n 1 2)& 5 1. Hence, (4.6) holds.

To show that (c) implies (a), suppose that (4.5) and (4.6) hold. It follows
from our calculations in the previous paragraph that |Uc| 5 |c| for every
c P B and that ^Uc, Uf) 5 0 for every c, f P B with c Þ f. As in the
proof of Lemma 3.1, |Uc| 5 |c| for every c in the subspace spanned by
the basis elements. Hence, the operator U satisfying (4.1) has a unique
extension to a bounded linear operator on H. We conclude that U P ((H ).
By Theorem 2.1(b), if |U*c| 5 1 for every c P B, then U P 8(H ). Applying
Lemma 4.1, we have

|U*n ^ t ^ w|2 5 o
x,s,d

.d(x, s, wn(d), t, d ).2

5 o
x,s

.d(x, s, wn(L), t, R).2 1 o
x,s

.d(x, s, wn(R), t, L).2 (4.7)
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We now show that for any y, y8 P I we have

Jy,y8 5 o
x,s

.d(x, s, y, t, R).2 1 o
x,s

.d(x, s, y8, t, L).2 5 1 (4.8)

Letting wn(L) 5 y, wn(R) 5 y8, it follows from (4.7) that

Jy,y8 5 |U*n ^ t ^ w| # |U*|2 5 |U| 5 1

Denoting the cardinality of S by .S., by (4.5) we have

.S. o
y,y8

Jy,y8 5 o
tPS

o
y,y8

Jy,y8

5 o
x,s
Fo

y,y8,t
.d(x, s, y, t, R).2 1 o

y,y8,t
.d(x, s, y8, t, L).2G

5 .I. o
x,s
Fo

y,t
.d(x, s, y, t, R).2 1 o

y8,t
.d(x, s, y8, t, L).2G

5 .I. o
x,s

o
y,t,d

.d(x, s, y, t, d ).2 5 .I. o
x,s

1 5 .I.2 .S.

Hence,

o
y,y8

Jy,y8 5 .I.2

and since Jy,y8 # 1 we have Jy,y8 5 1. It follows from (4.7) and (4.8) that
|U*c| 5 1 for every c P B, so U P 8(H ). Thus, M is a QTM. n

A QTM M operates as follows. The initial configuration has the form
c0 5 0 ^ s0 ^ w0 P B, where s0 is the start state and w0 is the input word.
After the ith time step, M is in the superposition configuration U ic0 P Ĥ.
The probability that M halts at time i becomes

o
n,w

.^U ic0, n ^ sf ^ w&.2

Of course, there are only a finite number of nonzero terms in this summation.
The probability that the word w is printed on the tape at time i becomes

o
n,s

.^U ic0, n ^ s ^ w&.2

Again, there are only a finite number of nonzero terms in this summation.
As with a SQM, the action of U is local on H.

In our previous study of quantum automata, we considered a quantum
computer called a quantum printer [2]. Let I and S be as for a QTM. A
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quantum printer is a triple P 5 (I, S, d) where d: I 3 S 3 I 3 S → C is a
transition amplitude function that satisfies

o
y,t

d(x, s, y, t) d(x8, s8, y, t)* 5 dx,x8 ds,s8

The quantum printer P operates as follows. Suppose we have an infinite one-
way tape divided into cells numbered 21, 0, 1, 2, . . . . The printer P has a
tape head that begins at cell 0 and moves one cell to the right at each time
step. The original tape is blank in every cell so P begins in state s0 with #
in every cell. At time 0, P scans its current state s0 and the # in cell 21.
Then P prints letter y in cell 0 and enters state s with amplitude d(#, s0, y,
s) and moves its tape head to cell 1. Then P scans the printed letter, say y,
in cell 0 and its current state, say s, prints letter z and enters state t with
amplitude d( y, s, z, t) and moves its tape head to cell 2. This process continues
until P enters its final state sf and halts. Of course, P can also be interpreted
as moving to the left on a one-way left infinite tape.

As with a QTM, the action of P is most easily given in terms of its
associated evolution operator. We form a finite-dimensional complex Hilbert
space H0 with an orthonormal basis identified with the elements of I 3 S.
Thus, I 3 S is the computational basis for H0 and we denote its elements by
x ^ s, x P I, s P S. We define the evolution operator UP: H0 → H0, by

UPx ^ s 5 o
y,t

d(x, s, y, t)y ^ t

and it follows that UP P 8(H0). Since a quantum printer P is much more
limited than a QTM, the Hilbert space H0 for P is finite dimensional and its
evolution operator UP is much simpler. In particular, UP can be represented
by a finite unitary matrix. Nevertheless, we shall show that there is a natural
connection between a QTM and quantum printers.

Lemma 4.3. If M 5 (I, S, d) is a QTM and a, b P C with .a. 5 .b. 5
1, then P 5 (I, S, g) is a quantum printer for

g(x, s, y, t) 5 ad(x, s, y, t, L) 1 bd(x, s, y, t, R)

Proof. Applying (4.5) and (4.6), we have

o
y,t

g(x, s, y, t)g(x8, s8, y, t)*

5 o
y,t

[ad(x, s, y, t, L) 1 bd(x, s, y, t, R)]

3 [a*d(x8, s8, y, t, L)* 1 b*d(x8, s8, y, t, R)*]

5 o
y,t,d

d(x, s, y, t, d ) d(x8, s8, y, t, d )*
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1 ab* o
y,t

d(x, s, y, t, L) d(x8, s8, y, t, R)*

1 ba* o
y,t

d(x, s, y, t, R) d(x8, s8, y, t, L)*

5 dx,x8 ds,s8

The result now follows. n

The next result can be proved using the fact that UU* 5 1, but it is
easier to prove using Lemma 4.3.

Corollary 4.4. If M 5 (I, S, d) is a QTM, then

o
x,s,d

d(x, s, y, t, d ) d(x, s, y8, t8, d )* 5 dy,y8 dt,t8 (4.9)

o
x,s

d(x, s, y, t, L) d(x, s, y8, t8, R)* 5 0 (4.10)

for every y8 P I, t8 P S.

Proof. Define a, b: I 3 S 3 I 3 S → C by

a(x, s, y, t) 5 d(x, s, y, t, L) 1 d(x, s, y, t, R) (4.11)

b(x, s, y, t) 5 d(x, s, y, t, L) 2 d(x, s, y, t, R) (4.12)

By Lemma 4.3, a(x, s, y, t) are the entries of a unitary matrix A, so AA* 5
1. It follows that

dy,y8 dt,t8 5 o
x,s

a(x, s, y, t) a(x, s, y8, t8)*

5 o
x,s,d

d(x, s, y, t, d ) d(x, s, y8, t8, d )*

1 o
x,s,d

d(x, s, y, t, d ) d(x, s, y8, t8, d8)* (4.13)

A similar observation for b leads to

dy,y8 dt,t8 5 o
x,s,d

d(x, s, y, t, d ) d(x, s, y8, t8, d )*

2 o
x,s,d

d(x, s, y, t, d ) d(x, s, y8, t8, d8)* (4.14)

Adding (4.13) and (4.14) gives (4.9). Hence,

o
x,s,d

d(x, s, y, t, d ) d(x, s, y8, t8, d8)* 5 0
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so that

Re o
x,s

d(x, s, y, t, L) d(x, s, y8, t8, R)* 5 0

Now let

a8(x, s, y, t) 5 d(x, s, y, t, L) 1 id(x, s, y, t, R)

By reasoning as before, we have

dy,y8 dt,t8 5 o
x,s,d

d(x, s, y, t, d ) d(x, s, y8, t8, d )*

2 i Fo
x,s

d(x, s, y, t, L) d(x, s, y8, t8, R)*

2 o
x,s

d(x, s, y, t, R) d(x, s, y8, t8, L)*G
Hence,

Im o
x,s

d(x, s, y, t, L) d(x, s, y8, t8, R)* 5 0

so (4.10) holds. n

Corresponding to a QTM M 5 (I, S, d) we have two quantum printers
P 5 (I, S, a), Q 5 (I, S, b), where a and b are defined as in (4.11), (4.12).
Since a, b give finite-dimensional unitary matrices A and B, applying results
in refs. 1 and 2, we can write A and B as finite products of quantum gates. Since

d(x, s, y, t, L) 5 1–2 a(x, s, y, t) 1 1–2 b(x, s, y, t)
(4.15)

d(x, s, y, t, R) 5 1–2 a(x, s, y, t) 2 1–2 b(x, s, y, t)

it follows that d(x, s, y, t, L) and d(x, s, y, t, R) can be written in terms of a
finite number of quantum gates. In this sense, quantum gates can be employed
in constructing a QTM. If a, b satisfy (4.15), we say that the quantum printers
P 5 (I, S, a), Q 5 (I, S, b) generate the QTM M 5 (I, S, d). Of course, we
have just shown that any QTM is generated by a pair of quantum printers.
The converse does not hold in the sense that an arbitrary pair of quantum
printers need not generate a QTM. The next result characterizes generating
pairs of quantum printers.

Lemma 4.5. A pair of quantum printers P 5 (I, S, a), Q 5 (I, S, b)
generate a QTM M 5 (I, S, d) if and only if
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o
t

[a(x, s, y, t) 2 b(x, s, y, t)][a(x8, s8, y8, t) 1 b(x8, s8, y8, t)]* 5 0

(4.16)

for every x, x8, y, y8 P I, s, s8 P S.

Proof. If P and Q generate M, then (4.16) follows from (4.6). Conversely,
suppose that (4.16) holds and d is given by (4.15). Then (4.6) follows immedi-
ately. To show that (4.5) holds we have

o
y,t,d

d(x, s, y, t, d ) d(x8, s8, y, t, d )*

5
1
4 o

y,t
[a(x, s, y, t) 1 b(x, s, y, t)][a(x8, s8, y, t) 1 b(x8, s8, y, t)]*

1
1
4 o

y,t
[a(x, s, y, t) 2 b(x, s, y, t)][a(x8, s8, y, t) 2 b(x8, s8, y, t)]*

5
1
2 o

y,t
a(x, s, y, t) a(x8, s8, y, t)* 1

1
2 o

y,t
b(x, s, y, t) b(x8, s8, y, t)*

5 dx,x8 ds,s8 n

Let M 5 (I, S, d) be a QTM with evolution operator U. Even though
U* gives the reverse operation of M, we cannot consider U* as the evolution
operator of a QTM. Indeed, by (4.2), U*n ^ t ^ w depends on the letters
wn(d) to the left and right of the tape head instead of the letter wn at the tape
head. Thus, U* does not act like the evolution operator of a QTM. We may
then ask whether M 8 5 (I, S, d8) is a QTM, where

d8(x, s, y, t, d ) 5 d( y, t, x, s, d )

The answer in general is no. Although (4.9) shows that (4.5) holds for d8,
(4.10) gives a weaker condition than (4.6), and (4.6) need not hold for d8.
We shall give an example to show this in the next section.

5. UNIDIRECTIONAL QUANTUM TURING MACHINES

For a QTM M 5 (I, S, d) define the operators DL , DR on the finite-
dimensional Hilbert space H0 with computational basis I 3 S by

DLx ^ s 5 o
y,t

d(x, s, y, t, L)y ^ t

DRx ^ s 5 o
y,t

d(x, s, y, t, R)y ^ t
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It follows from (4.5) and (4.6) that DLD*L 1 DRD*R 5 1 and DRD*L 5 0. More-
over, (4.9) and (4.10) give that D*L DL 1 D*RDR 5 1 and D*RDL 5 0. For a, b
P C with .a. 5 .b. 5 1, define the operator A on H0 by A 5 aDL 1 bDR.
Then A is unitary because

AA* 5 (aDL 1 bDR)(a*D*L 1 b*D*R)

5 DLD*L 1 DRD*R 1 ba*DRD*L 1 ab*DLD*R 5 1

This gives an alternative proof of Lemma 4.3. We say that M is commutative
if DRDL 5 DLDR.

Lemma 5.1. Suppose a QTM M 5 (I, S, d) is generated by the quantum
printers P and Q with evolution operators UP , UQ , respectively. Then M is
commutative if and only if UP UQ 5 UQ UP.

Proof. Since UP 5 DL 1 DR , UQ 5 DL 2 DR , we have the following
equivalent equations:

UPUQ 5 UQUP

(DL 1 DR)(DL 2 DR) 5 (DL 2 DR)(DL 1 DR)

D2
L 2 DLDR 1 DRDL 2 D2

R 5 D2
L 1 DLDR 2 DRDL 2 D2

R

DRDL 5 DLDR n

A QTM M 5 (I, S, d) is unidirectional [1] if

d(x, s, y, t, R) d(x8, s8, y8, t, L)* 5 0 (5.1)

for all values of the arguments. Notice that (5.1) is a strengthening of (4.6).
Equation (5.1) says that any state of M can be entered from only one direction.
It is shown in ref. 1 that any QTM can be simulated by a unidirectional QTM
with slowdown by a factor of at most five. For this reason one can frequently
assume without loss of generality that a QTM is unidirectional.

Lemma 5.2. Two quantum printers P 5 (I, S, a), Q 5 (I, S, b) generate
a unidirectional QTM if and only if for every t P S either a(x, s, y, t) 5
b(x, s, y, t) for every x, y P I, s P S or a(x, s, y, t) 5 2b(x, s, y, t) for every
x, y P I, s P S.

Proof. If P and Q generate a unidirectional QTM M 5 (I, S, d), then
(5.1) implies that

[a(x, s, y, t) 2 b(x, s, y, t)][a(x8, s8, y8, t) 1 b(x8, s8, y8, t)]* 5 0 (5.2)

for every value of the arguments. Fix t P S. If there exist x8, y8 P I, s8 P
S such that the second factor in (5.2) is nonzero, then a(x, s, y, t) 5 b(x, s,
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y, t) for every x, y P I, s P S. If there exist x, y P I, s P S such that the
first factor in (5.2) is nonzero, then a(x8, s8, y8, t) 5 2b(x8, s8, y8, t) for
every x8, y8 P I, s8 P S. Conversely, suppose the second statement of the
lemma holds. Then (4.16) holds, so by Lemma 4.5, P and Q generate a QTM
M 5 (I, S, d). Moreover, (5.1) clearly holds, so M is unidirectional. n

Let P 5 (I, S, a), Q 5 (I, S, b) be quantum printers with evolution
operators A, B, respectively, considered as unitary matrices on the Hilbert
space H0 with computational basis I 3 S. Suppose that P and Q generate a
unidirectional QTM M 5 (I, S, d). Applying Lemma 5.2, we have S 5 SL ø
SR and SL ù SR 5 [, where

SL 5 {t P S: a(x, s, y, t) 5 b(x, s, y, t) for all x, y P I, s P S}

5 {t P S: d(x, s, y, t, R) 5 0 for all x, y P I, s P S}

SR 5 {t P S: a(x, s, y, t) 5 2b(x, s, y, t) for all x, y P I, s P S}

5 {t P S: d(x, s, y, t, L) 5 0 for all x, y P I, s P S}

Letting r(t) be the characteristic function of SR , we have

A*B(x, s, y, t) 5 (21)r(t) dx,y ds,t (5.3)

Indeed,

A*B(x, s, y, t) 5 o
y8,t8

A*(x, s, y8, t8)B( y8, t8, y, t)

5 o
y8,t8

a( y8, t8, x, s)*b( y8, t8, y, t) (5.4)

Since B is unitary, it follows from Lemma 5.2 that the right side of (5.4)
vanishes if x Þ y or s Þ t. If x 5 y and s 5 t, then the right of (5.4) is 1
or 21 depending on whether t P SL or t P SR , respectively. We conclude
that A*B is a diagonal matrix with diagonal elements 61, where 21 appears
in precisely those entries for which t P SR. A simple example is a one-way
QTM in which DR 5 0 or DL 5 0. In the first case, A 5 B and A*B 5 1,
and in the second case B 5 2A and A*B 5 21.

In the general situation, letting D 5 A*B, we have that B 5 AD. Hence,

DL 5 1–2 A 1 1–2 B 5 1–2 A 1 1–2 AD 5 A(1–2 1 1 1–2 D)
(5.5)

DR 5 1–2 A 2 1–2 B 5 1–2 A 2 1–2 AD 5 A(1–2 1 2 1–2 D)

Now PL 5 1–2 I 1 1–2 D and PR 5 1–2 I 2 1–2 D are diagonal matrices with 0 or 1
entries. It is clear that PL and PR are the projections of H0 onto the subspaces
generated by I 3 SL and I 3 SR, respectively. We conclude that DL can be
written as a product of quantum gates and PL , and DR is the same product
of quantum gates and PR.
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Lemma 5.2 gives a simple method for constructing any unidirectional
QTM. Just take any unitary matrix A on the Hilbert space H0 with computa-
tional basis I 3 S. Let S 5 SL ø SR be a partition of S and define DL 5 APL

and DR 5 APR , where PL and PR are the projections of H0 onto the subspaces
generated by I 3 SL and I 3 SR, respectively. Then

d(x, s, y, t, L) 5 ^DLx ^ s, y ^ t&

d(x, s, y, t, R) 5 ^DRx ^ s, y ^ t&

and M 5 (I, S, d) is a unidirectional QTM.
For a simple example, let .I. 5 .S. 5 2 and let

A 5
1
2 3

1 1 1 1
1 21 21 1

2!2 0 0 !2
0 !2 2!2 0

4
For S 5 {t1, t2}, let SL 5 {t1}, SR 5 {t2}. Then PL 5 diag(1, 0, 1, 0), PR 5
diag(0, 1, 0, 1), and

DL 5 APL 5
1
2 3

1 0 1 0
1 0 21 0

2!2 0 0 0
0 0 2!2 0

4
DR 5 APR 5

1
2 3

0 1 0 1
0 21 0 1
0 0 0 !2
0 !2 0 0

4
We mentioned earlier that in contrast to (4.6), the equation

o
S

d(x, s, y, t, R) d(x8, s, y8, t8, L)* 5 0

need not hold for a QTM. The present example illustrates this fact. Indeed,
we have

d(x2, t2, x1, t2, R) d(x1, t2, x1, t1, L)*

1 d(x2, t1, x1, t2, R) d(x1, t1, x1, t1, L)*

5
1

!2
?

1
2

1 0 ?
1
2

Þ 0
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We now apply Lemma 4.5 to obtain a simple example of a nonunidirec-
tional QTM. Let I, S, and A be as in the previous example and let

B 5
1
2 3

1 1 1 1
21 1 1 21
0 2!2 !2 0
!2 0 0 2!2

4
To show that A and B are evolution operators for quantum printers that
generate a QTM, we must verify (4.16). Notice that b(x, s, y, t1) 5 a(x, s,
y, t2) and b(x, s, y, t2) 5a(x, s, y, t1). Hence,

[a(x, s, y, t1) 2 b(x, s, y, t1)] [a(x8, s8, y8, t1) 1 b(x8, s8, y8, t1)]*

1 [a(x, s, y, t2) 2 b(x, s, y, t2)]

[a(x8, s8, y8, t2) 1 b(x8, s8, y8, t2)]*

5 [a(x, s, y, t1) 2 a(x, s, y, t2)]

[a(x8, s8, y8, t1) 1 a(x8, s8, y8, t2)]*

1 [a(x, s, y, t2) 2 a(x, s, y, t1)]

[a(x8, s8, y8, t2) 1 a(x8, s8, y8, t1)]* 5 0

In this case

A*B 5
1
2 3

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

4
so by the discussion following Lemma 5.2, the generated QTM is not unidirec-
tional. To compute d, we have

DL 5
1
2

A 1
1
2

B 5
1
2 3

1 1 1 1
0 0 0 0

21/!2 21/!2 1/!2 1/!2
1/!2 1/!2 21/!2 21/!2

4
DR 5

1
2

A 2
1
2

B 5
1
2 3

0 0 0 0
1 21 21 1

21/!2 1/!2 21/!2 1/!2
21/!2 1/!2 21/!2 1/!2

4



2172 Gudder

6. GENERALIZED QTMs AND QUANTUM PUSHDOWN
AUTOMATA

This section briefly discusses two generalizations of quantum computers
considered previously. Our investigations of these are preliminary and a
complete analysis will require further development.

A generalized QTM is the same as a QTM except that the tape can stay
in the same position as well as move to the left or right. In this case

d: I 3 S 3 I 3 S 3 {L, N, R} → C

where N indicates no movement of the tape head. It is shown in ref. 1 that
unlike ordinary Turing machines, a generalized QTM is more powerful than
a QTM. The Hilbert space H and the computational basis B for a generalized
QTM M 5 (I, S, d) are the same as they were for a QTM. The evolution
operator U: H → H for M satisfies

Un ^ s ^ w 5 o
y,t,d

d(x, s, y, t, d )n(d ) ^ t ^ w( y, n)

where d P {L, N, R}, n(L) 5 n 2 1, n(N ) 5 n, n(R) 5 n 1 1. It is easy to
check that the adjoint U* of U satisfies (4.2) except now d P{L, N, R} and

d8 5 5
L if d 5R
N if d 5 N
R if d 5 L

The generalized counterpart of Theorem 4.2 holds except that in addition to
Condition 4.5 with d P {L, N, R} and Condition 4.6, we need

o
t

[d(x, s, y, t, N ) d(x8, s8, y8, t, L)* 1 d(x, s, y, t, R) d(x8, s8, y8, t, N )*]

5 0 (6.1)

for every x, y, x8, y8 PI, s, s8 P S.
To show that (6.1) is necessary, suppose U P ((H ), w8m 5 wm for m Þ

n, m Þ n 1 1, wn 5 x, wn11 5 y8,w8n 5 y, w8n11 5 x8. We then have

0 5 ^Un ^ s ^ w, U(n 1 1) ^ s8 ^ w8&

5 ^o
z,t,d

d(x, s, z, t, d )n(d ) ^ t ^ w(z, n),

o
z8,t8,e

d(x8, s8, z8, t8, e)(n 1 1)(e) ^ t8 ^ w8(z8, n 1 1)&

5 o
z,t,d

o
z8,t8,e

d(x, s, z, t, d ) d(x8, s8, z8, t, e)*
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3 ^n(d ), (n 1 1)(e)&^t, t8&^w(z, n), w8(z8, n 1 1)&

5 o
z,z8,t

d(x, s, z, t, N ) d(x8, s8, z8, t, L)*^w(z, n), w8(z8, n 1 1)&

1 o
z,z8,t

d(x, s, z, t, R) d(x8, s8, z8, t, N )*^w(z, n), w8(z8, n 1 1)&

But ^w(z, n), w8(z8, n 1 1)& 5 0 unless z 5 w8n 5 y and z8 5 wn11 5 y8, in
which case ^w(z, n), w8(z8, n 1 1)& 5 1. Hence, (6.1) holds. The rest of the
proof of the generalized counterpart of Theorem 4.2 proceeds as in the proof
of Theorem 4.2.

For a generalized QTM M 5 (I, S, d), define the operators DL , DR on
H0 as in Section 5 and define the operator DN by

DNx ^ s 5 o
y,t

d(x, s, y, t, N )y ^ t

As before we have DRD*L 5 0 and

DLD*L 1 DND*N 1 DRD*R 5 1

In addition, by (6.1) we have

DND*L 1 DRD*N 5 0

Lemma 6.1. Let M 5 (I, S, d) be a generalized QTM and let a, b, c P
C with .a. 5 .b. 5 .c. 5 1,ca* 5 bc*. Then the operator A on H0 defined by

A 5 aDL 1 bDR 1 cDN

is unitary.

Proof. Applying our previous observations, we have

AA* 5 (aDL 1 bDR 1 cDN) (a*D*L 1 b*D*R 1 c*D*N)

5 DLD*L 1 DRD*R 1 DND*N 1 ab* DLD*R 1 ba* DRD*L

1 ca* DND*L 1 bc* DRD*N 1 ac* DLD*N 1cb* DND*R 5 1 n

For a, b, c P C satisfying the conditions of Lemma 6.1, it follows that
P 5 (I, S, g) is a quantum printer for

g(x, s, y, t) 5 a d(x, s, y, tL) 1 b d(x, s, y, tR) 1 c d(x, s, y, tN )

Lemma 6.2. If M 5 (I, S, d) is a generalized QTM, then there exist
three quantum printers P 5 (I, S, a), Q 5 (I, S, b), T 5 (I, S, g) such that

d(x, s, y, t, L) 5 1–4 (1 2 i) a(x, s, y, t) 1 1–4 (1 1 i) b(x, s, y, t) 1 1–2 g(x, s, y, t)

d(x, s, y, t, R) 5 1–4 (1 1 i) a(x, s, y, t) 1 1–4 (1 2 i) b(x, s, y, t) 2 1–2 g(x, s, y, t)
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d(x, s, y, t, N ) 5 1–2 a(x, s, y, t) 2 1–2 b(x, s, y, t)

Proof. Define the operators A, B, C on H0 by

A 5 DL 1 DR 1 DN

B 5 DL 1 DR 2 DN

C 5 DL 2 DR 1 iDN

It follows from Lemma 6.1 that A, B, C P 8(H0). Solving these three
equations simultaneously, we obtain

DL 5 1–4 (1 2 i)A 1 1–4 (1 1 i)B 1 1–2 C

DR 5 1–4 (1 1 i)A 1 1–4 (1 2 i)B 1 1–2 C

DN 5 1–2 A 2 1–2 B

Letting P 5 (I, S, a), Q 5 (I, S, b), T 5 (I, S, g) be the quantum printers
with evolution operators A, B, C, respectively, we obtain the result. n

If P, Q, T satisfy the conditions of Lemma 6.2, we say that P, Q, T
generate M. Then Lemma 6.2 says that any generalized QTM is generated
by three quantum printers. One can now continue the analysis of a generalized
QTM as in Section 5, but we shall not pursue this here.

To better understand the concept of a quantum pushdown automaton,
we first review its classical version. A deterministic pushdown automaton
(DPDA) is a 4-tuple ! 5 (S, I, T, d), where S is a finite set of internal
control states with an identified start state s0 P S and an identified set Sf #
S of final states, I is a finite input alphabet, T is a finite stack alphabet, and

d: I 3 {l} ø T 3 S → S 3 T*

is a transition function. The DPDA ! has access to a stack which is an
infinite memory that stores words in the alphabet T. The transition function
d allows ! to scan the input letter, the top stack letter, and its current control
state. It then updates the control state, pops the top letter off the stack, and
pushes a (possibly empty) word onto the top of the stack. If the word in the
stack is empty so there its no top letter, we use l in d. An element s 3 w8 P
S 3 T* is a configuration of !. The start configuration for ! has the form
s0 3 w80. After reading a word w P I*, ! accepts w if ! is in a configuration
s 3 {l}, where s P Sf. The language accepted by ! is the set of all words
that ! accepts. For example, the Dyck language of properly nested words
of brackets.

{l,( ), (( )), ( )( ), (( )( )), . . .}

is accepted by a DPDA !. In this case, I 5 {( , )}, T 5 {x}, and ! pushes



Quantum Computers 2175

x onto the stack when it scans a ( and pops an x off the stack when it scans
a ). If ! ever attempts to pop an x off an empty stack, then ! enters a reject
configuration and stays there. A DPDQ does not lose any power if it is only
allowed to push a single letter or the empty word at a time. In this case, it
either pushes down a single new letter or pops off an old letter.

A quantum pushdown automaton (QPDA) is a 4-tuple ! 5 (S, I, T, d),
where S, I, T are as in a DPDA, but now d is a transition amplitude function

d: I 3 S 3 {l} ø T 3 S 3 T ø {p} → C

Then d has the natural interpretation and we require that d satisfies the
following conditions:

o
r,t

d(x, s, v, r, t) d(x, s8, v, r, t)* 5 ds,s8 (6.2)

for every v P {l} ø T, where r P S, t P T ø {p};

o
r

d(x, s, v, r, p) d(x, s8, v8, r, p)* 5 0 (6.3)

for every v, v8 P {l} ø T, with v Þ v8; and

o
r

d(x, s, v, r, t) d(x, s8, v8, r, p)* 5 0 (6.4)

for every t P T, v P {l} ø T, v8 P T.
Let H be the configuration Hilbert space with computational basis S 3

T*. For x P I, define the transition operator U(x): H → H as follows. If
s P S, u 5 uk ??? u1 P T*\{l}, then

U(x)s ^ u 5 o
r,t

d(x, s, u, r, t)r ^ u(t) (6.5)

where

u(t) 5 Hut if t P T
uk ??? u2 if t 5 p

and when u 5 l, then U(x) is also defined by (6.5) with

u(t) 5 Ht if t P T
l if t 5 p

Theorem 6.3. The operator U(x) P ((H ) if and only if (6.2)–(6.4) hold.

Proof. Assume that U(x) P ((H ). Letting u 5 uk ??? u1 v Þ l, we have
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ds,s8 5 ^U(x)s ^ u, U(x)s8 ^ u&

5 Ko
r,t

d(x, s, v, r, t)r ^ u(t), o
r8,t8

d(x, s8, v, r8, t8)r8 ^ u(t8)L
5 o

r,tPT
o

r8,t8PT
d(x, s, v, r, t) d(x, s8, v, r8, t8)*^r, r8&^ut, ut8&

1 o
r,r8

d(x, s, v, r, p) d(x, s8, v, r8, p)*^r, r8&^uk ??? u1, uk ??? u1&

5 o
r,t

d(x, s, v, r, t) d(x, s8, v, r, t)*

If u 5 l and hence v 5 l, we get the same result. Hence, (6.2) holds. Letting
u 5 uk ??? u1v, u8 5 uk ??? u1v8, v, v8 P T with v Þ v8, we have

0 5 ^U (x)s ^ u, U(x)s8 ^ u8&

5 o
r

d(x, s, v, r, p) d(x, s8, v8, r, p)*

If u 5 l, u8 5 v8 P T, we get the same result, so (6.3) holds. Letting u 5
uk ??? u1v, u8 5 uk ??? u1vt1v8, we have

0 5 ^U(x)s ^ u, U(x)s8 ^ u8&

5 o
r

d(x, s, v, r, t1) d(x, s8, v8, r, p)*

If u 5 v 5 l, we get the same result, so (6.4) holds.
Conversely, assume that (6.2)–(6.4) hold. To prove that U(x) P ((H ),

it is sufficient to show that

^U(x)s ^ u, U(x)s8 ^ u8& 5 ds,s8 du,u8

That |U(x)s ^ u| 5 1 follows from (6.2). If s Þ s8, we have

^U(x)s ^ u, U(x)s8 ^ u8&

5 o
r,t,t8

d(s, x, u1, r, t) d(x, s8, u81, r, t8)*^u(t), u8(t)&

The right side vanishes unless u(t) 5 u8(t8) for some t, t8 P T ø {p}. If u 5
u8, then the right side vanishes by (6.2). The other cases are given by (6.3)
and (6.4). If s 5 s8 and u Þ u8, then we proceed in a similar way. n

It can be shown that U(x) ¸ 8(H ) in general. We leave a further study
of QPDAs, including the languages they accept, to a later paper.
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